超级岩石(SHR)地热能系统的钻井和井结构的研究边界 - 可再生,基本负荷电力通过在深处(> 5 km)循环水,热(> 374°C)岩石产生 - 稳步前进。在多晶钻石碳化物(PDC)钻头设计中的最新成就,提高了穿透速率(ROP)到硬岩中的成就,并且隔热钻孔的开发表明,SHR地热项目的深入钻井正处于不可通知的地平线上。但是,在敌对地下地质环境中,几个关键的技术差距仍然阻碍了深入钻探的方式。技术公司和实验室必须在专门的钻机,位技术,高温下井工具和温度管理设备方面取得快速的进步。目前,这些钻井系统以及进入深层岩层所需的时间 - 创造了巨大的项目成本。要将SHR Geothermal带入商业生存能力,技术公司和实验室必须迅速开发,测试和部署新技术。本报告回顾了最先进的深度地热钻井和井建筑技术,确定了现有的技术差距,并提出了克服这些差距的策略。从理论到商业上可扩展的1-9之间,每种技术都有1-9之间的技术准备水平(TRL)。总体而言,我们发现可以通过部署现有技术的组合来钻孔地热井,并且SHR钻孔的技术挑战是可以克服的。经济挑战是这些钻井系统的可用性有限和测试的函数,随着SHR地热工业的扩展,这两者都会减少。这些技术共有的一阶差距是缺乏在场地和受控实验室条件下获得SHR条件的机会。没有开放式实验设施和试点站点,这些技术将无法进行迭代的改进,以脱离风险的SHR钻探和推动行业前进。
冻结企业流量权利和公司流量限制计算的日期说明:用于确定公司流量权利和公司流量限制的计算的某些组件又用于确定市场与市场之间的定居点依赖于建立了在哪个公司点对点的历史参考日期基于哪个公司的历史参考日期。这个历史性的参考日期称为“冻结日期”,目前根据PJM和MISO开始市场与市场协调的日期,目前被确定为2004年4月1日。RTO及其利益相关者已同意使用冻结日期的概念,以及由于当前冻结日期即将临近20年以来,应重新审视哪些特定使用日期。这是一个非常复杂的主题,因此需要深入的利益相关者的教育和讨论。此外,当前方法的替代方案将同样复杂,这将确定潜在转向替代方法的影响。
超级岩石(SHR)地热能系统的钻井和井结构的研究边界 - 可再生,基本负载电力通过在深处(> 5 km)循环水,热(> 374°C)岩石的产生 - 稳步前进。在多晶钻石碳化物(PDC)钻头设计中的最新成就,提高了穿透速率(ROP)到硬岩中的成就,并且隔热钻孔的开发表明,SHR地热项目的深入钻井正处于不可通知的地平线上。但是,在敌对地下地质环境中,几个关键的技术差距仍然阻碍了深入钻探的方式。技术公司和实验室必须在专门的钻机,位技术,高温下井工具和温度管理设备方面取得快速的进步。目前,这些钻井系统以及进入深层岩层所需的时间 - 创造了巨大的项目成本。要将SHR Geothermal带入商业生存能力,技术公司和实验室必须迅速开发,测试和部署新技术。本报告回顾了最先进的深度地热钻井和井建技术,确定了现有的技术差距,并提出了克服这些差距的策略。从理论到商业上可扩展的1-9之间,每种技术都有1-9之间的技术准备水平(TRL)。总体而言,我们发现可以通过部署现有技术的组合来钻孔地热井,并且SHR钻孔的技术挑战是可以克服的。经济挑战是这些钻井系统的可用性有限和测试的函数,随着Shr地热行业的扩展,这将减少。这些技术共有的一阶差距是缺乏在场地和受控实验室条件下获得SHR条件的机会。没有开放式实验设施和试点站点,这些技术将无法进行迭代的改进,以脱离风险的SHR钻探和推动行业前进。
钻井技术的生命周期评估(LCA)对其环境影响进行了全面评估,包括从原材料获取到寿命终止处置的所有阶段。本研究的重点是关键钻井技术,包括旋转钻井,方向钻孔,液压压裂和深水钻孔,并评估其在各种生命周期阶段的环境绩效:原材料的获取,制造,运输,安装,安装和操作,维护和维修,维护和维修,以及生命的生命分配。LCA在钻井生命周期中揭示了重要的环境热点,尤其是在原材料提取,运输和操作活动等阶段。这些热点对环境影响不成比例,包括高能消耗,温室气体排放,用水,空气污染,土地使用和栖息地破坏以及产生废物。为了解决这些影响,该研究通过绩效基准,最佳实践和技术创新来确定改善的机会。关键缓解策略包括提高资源效率,优化能源使用以及实施先进的废物管理实践。这项研究强调了研发,协作和法规合规性在钻探操作中的环境可持续性中的重要性。技术创新,例如更高效的钻井设备,改进的流体管理系统和高级监控技术,对减少环境足迹至关重要。总体而言,将环境可持续性整合到钻井操作中对于缓解环境风险,确保监管合规性以及维护行业的社会许可以进行运营至关重要。本研究为行业利益相关者,政策制定者和环境拥护者提供了宝贵的见解和建议,以促进可持续的钻探实践并减少资源提取活动的生态影响。
脚注:1. 石油产量代表该地区所有地层的原油和凝析油产量。产量不仅限于致密地层。区域由所有选定的县定义,包括致密油层以外的地区。2. 天然气产量代表该地区所有地层的总(加工前)天然气产量。产量不仅限于页岩地层。区域由所有选定的县定义,包括页岩地层以外的地区。3. 本报告中使用的月平均钻机数量是根据贝克休斯报告的石油和天然气钻机总数的每周数据计算得出的。4. 新井是指上个月首次开始生产的井。每个井仅在一个月内属于新井类别。重新加工和重新完井的井不包含在计算中。5. 钻机数量数据滞后于生产数据,因为 EIA 观察到,预测某个月开始生产的新井数量的最佳指标是两个月前投入运营的钻机数量。
抽象钻探是采矿探索领域中使用的最能源密集型技术过程之一。钻入岩石的行为会引起热量,这是由于岩石和钻头之间产生的摩擦而引起的。这种热产生导致岩石内的压力发展,最终导致其失败。由热量的释放消耗了供钻头的80%的压倒性能量,其中一定比例的能量提供了残留的钻头改变和岩石碎片(Dreus等,2016)。主要是磨损的磨损是导致位恶化的主要因素,因为钻头在遇到岩层时经历了大量磨损,这主要归因于岩石样品中存在的二氧化硅含量(Abbas,K.,K.,2018)。本文概述了在实验室和现场调查中使用温度测量设备在各个位置进行的各种钻井操作,以了解操作参数的概念对各种机械性能及其方向的影响。关键字:钻井,温度测量,机械性能,传热。
从SPUD到钻机释放的项目活动预计将不超过120天。与结构和钻探有关的表面干扰的总面积约为13英亩。将在与天然气加工设施相邻的工业区域上建造约6.3英亩的井垫和短途通道。两个井口都位于同一垫上,尽管尚未确定确切的间距。已经制定了剪切/填充计划,以指示去除地球的水平和重新分布,以构建一个平坦的区域,以定位能够钻孔到拟议项目的设计深度。与新通道道路相关的干扰面积约为0.8英亩。拟议的道路将被加冕,抛弃和建造约24英尺。宽阔的碎石表面,有分级路堤和沟渠。将安装跨涵洞。现场的现有道路将保持在安全可用的状态。道路维护将继续持续到最后放弃和开垦,可能包括刀刃,沟渠清洁,碎石表面,填充车辙和较低点,安装侵蚀控制,防尘控制,清除防雪以及涵洞更换或清洁。尘埃控制可以通过浇水,地主批准的氯化镁
•简介概述了文件的范围和目的,涵盖安全案件的设施,批准和托管详细信息的立法,主要标准和实践守则,有关安全案件和其他行政要求的通信的地址(第3.1节)。•操作说明提供了该设施,其功能和控制系统的简洁概述(第3.2节)。•安全管理系统(SMS)提供了对维护设施和工人安全的管理系统的详细说明。这包括安全性关键要素(SCE)的绩效标准,并支持正式安全评估(FSA)的发现(第3.3节)。•正式的安全评估提供了对设施的风险管理方法的详细说明,风险评估咨询的摘要,已确定的重大事故事件的详细信息(MAES),降低风险SFAIRP和BOWTIE图表(第3.4节)。•紧急响应计划提供了设施的ERP的详细说明,包括ERP符合WHS Pageo法规的证据(第3.5节)
2023 年 11 月 10 日,波恩/因戈尔施塔特曼兴机场 PFAS 下游防护项目开始钻井 2023 年 11 月 7 日,机场 PFAS 下游防护项目“Alte Feuerwache”开始钻井。经过密集的前期规划和准备工作完成后,曼奇工厂首个 PFAS 项目的工厂组件将在未来几个月内分三个工作包逐步建设。过去,消防部门(民用和军用)都使用含全氟烷基磺酸盐 (PFAS) 的灭火剂来扑灭液体火灾(例如煤油)。目前,灭火剂中单个 PFAS 的使用及其允许最大浓度等均受到欧洲层面的统一监管。一旦发生真实火灾,即必须使用含有 PFAS 的灭火剂时,德国联邦国防军消防队会立即采取紧急措施(例如遏制设备、液体屏障)以避免污染。因此,如今的土壤和地下水污染很大程度上是由于在 PFAS 的环境相关性被人们认识到并且相应的法规生效之前使用了灭火泡沫造成的——就像德国曼奇的德国联邦国防军基地的情况一样。德国武装部队已经接管了曼奇机场的污染处理工作。牵头机构是德国联邦国防军基础设施、环境保护和服务办公室(BAIUDBw),下萨克森州建筑和房地产办公室(NLBL)作为其土壤和地下水保护联邦控制中心为其提供支持。此外,还与巴伐利亚自由州、普法芬霍芬伊尔姆区和因戈尔施塔特国家建筑局的负责专业部门保持着密切的交流和信任合作。在广泛的土壤和地下水调查过程中,发现曼奇机场及其周围地区受到 PFAS 污染。为了防止受 PFAS 污染