。 《竞争性基金间接费用执行通用指南》(有关部委竞争性研究基金联络委员会2001年4月20日通过(请参阅最新版本)) 可用于附表1所列费用*计算间接费用时,不足1日元的小数部分向下舍入。
《巴黎协定》要求政策制定者将全球平均温度的升高远低于2°C以下,同时追求将增加到1.5°C的努力。此外,它要求金融流量与通往低温温室气体排放技术的途径一致。迄今为止的保诚监督当局主要是从面向风险的观点来评估银行对与气候相关的财务冲击的韧性,例如基于专用的气候压力测试,我们在本文中争辩说,除了保诚的监督之外,互补的观点是银行通过为气候有害活动的融资而对全球变暖的贡献。根据欧盟公司可持续性报告指令(CSRD)的双重重要性报告,这种观点变得特别重要。根据摄氏学位的巴黎协议的目的,我们通过量化银行(非SME)公司贷款书的隐含温度上升来研究银行与温度目标的一致性。为此,我们提出了一种创新的一致性方法,该方法利用了由Right°开发的所谓的X度兼容性(XDC)模型,我们将其应用于从选定的欧盟银行收集的颗粒状暴露级信息。根据我们的发现,根据汇总方法,银行(非SME)公司贷款组合的平均温度升高范围在3.7°C至4.1°C之间。当我们观察到整个银行的某些异质性时,它们都没有在与商定的目标兼容的道路上。此外,我们表明,根据我们的方法,隐含的温度升高也可以作为过渡风险的代理,从而将双重物质从单个度量的角度组合起来。
注意:有调查结果的报告必须提交 ACAP。没有调查结果的报告无需采取进一步行动。活动将提交活动纠正行动计划(ACAP 摘要报告 FEVA 表格 32-601)NLT IAW HWMP 下方检查报告中指定的日期。如果未在指定日期之前收到 ACAP,将通过 MSG 指挥官向指挥官或主任发送备忘录。
•钻取后,必须使用AS-Drill调查计划过程在Esubmission门户中报告最终的井联坐标。注意:如果最终的UTM坐标导致在不同的NTS或DLS法律位置钻孔的井头,则使用下一个可用的异常代码来反映允许的法定位置和井名,以反映钻孔的NTS或DLS法律位置。井名不会自动将其重命名为按顺序排序,并且不会根据钻孔序列重新分配异常代码。请参阅《石油和天然气活动手册》,以获取有关AS-DREARD调查计划要求的更多信息。
*1在“战争死亡的评估和方法的专业技术团队报告和方法”(2020年3月25日)中,两种俄罗斯案件中,某些情况包含的案例不太可能是日本人,菲律宾的10个标本,在菲律宾中,所有这些都被认为是日本人,以及“新的案例”,以及“新的案例”。 2019年),包括四个俄罗斯案件,两个缅甸案件和一个图瓦卢案件,这些案件在“大约241例俄罗斯案件,两个缅甸案件和一个图瓦卢案件中”(2019年12月18日)发表,该案件的总数及其属于陪伴评估的小组及其案件的案例及其案件的总数未讨论。方法”(2020年3月25日)包括七起案件和460例俄罗斯案件,这些案例主要是基于日本人的葬礼。
前期调查 自1997年青岛CCSD钻井选址研讨会以来,在江苏省东海县茅北CCSD目标区开展了野外地质和地球物理调查,目的是建立钻井区三维地质和地球物理模型,准确确定CCSD先导孔和主孔的钻孔位置。开展的工作包括1:5000和1:10000比例尺地质填图、反射地震勘探、重磁法勘探等。此外,还利用电缆取芯技术钻探了1028m深的连续取芯钻孔(PP2)。在该孔中,测量了不同深度的温度和来自孔的岩心的热导率,计算了1000m深度的地层热梯度并外推到5000m深度。在该孔内还进行了地球物理测井和VSP。根据综合研究和调查的结果,确定了CCSD导向孔和主孔的精确坐标。进一步的地质和地球物理研究,包括对岩心的研究
•钻取后,必须使用AS-Drill调查计划过程在Esubmission门户中报告最终的井联坐标。注意:如果最终的UTM坐标导致在不同的NTS或DLS法律位置钻孔的井头,则使用下一个可用的异常代码来反映允许的法定位置和井名,以反映钻孔的NTS或DLS法律位置。井名不会自动将其重命名为按顺序排序,并且不会根据钻孔序列重新分配异常代码。请参阅《石油和天然气活动手册》,以获取有关AS-DREARD调查计划要求的更多信息。
1安全,环境保护以及质量监督与检查研究所,CNPC Chuanqing钻探工程有限公司,Ltd。拆卸德里克斯(钻孔)。首先,引入了双臂协作机器人的基本概念和技术背景,然后讨论了其在Derricks的组装和拆卸中的特定应用程序及其面临的挑战。最后,总结了当前研究的进展,并提出了未来的发展方向。关键字:双臂协作机器人,德里克,组装和拆卸,拆卸,工业自动化I.随着工业自动化的快速发展,各个领域的机器人技术的应用范围和深度正在不断扩大。无论是制造业,医疗保健,农业还是服务行业,机器人技术都在逐渐改变传统的工作方式和提高效率和质量。在这种情况下,双臂协作机器人是一种可以模拟人手协调运动的高级设备,已经显示出前所未有的潜力。这种类型的机器人不仅可以执行复杂的操作任务,而且还可以通过精确的同步控制和强制反馈机制实现与环境和对象的高度相互作用。但是,传统的手动操作方法在效率和安全性方面存在明显的缺点。在石油钻井行业,Derrick(钻机)拆卸Dissemembly是一项至关重要且具有挑战性的任务。DerrickofDisassemblyThe Installation and Nipysembly Process涉及大量的重型零件和高精度操作,这需要工人具有丰富的经验和高度的协调。效率低下不仅会导致更长的运行时间和增加的成本,而且可能会对整体钻井进度产生负面影响。在高风险的工作环境中,很难完全保证工人的安全,
样品编号 东向 北向 类型 Li 2 O ppm Cs ppb Rb ppb Sn ppb BNS00313 475000 6495800 螺旋钻 108 3.23 51.30 1.18 BNS00345 475150 6496200 螺旋钻 110 4.60 74.00 1.58 BNS00346 475250 6496200 螺旋钻 107 5.06 82.30 1.79 BNS00348 475450 6496200 螺旋钻 113 4.86 85.10 1.90 BNS00361 476750 6496200 螺旋钻 127 4.51 67.10 1.59 BNS00362 476850 6496200 螺旋钻 118 3.87 57.50 1.41 BNS00419 476250 6497000 螺旋钻 116 3.99 76.70 1.66 BNS00422 476550 6497000 螺旋钻 112 3.93 80.70 1.56 BNS00423 476650 6497000 螺旋钻 120 3.87 67.80 1.55 BNS00440 478350 6497000 螺旋钻 115 2.29 60.60 1.17 BNS00458 475400 6497400 螺旋钻 114 5.03 84.50 1.56 BNS00460 475600 6497400 螺旋钻 106 4.55 77.00 1.46 BNS00464 476000 6497400 螺旋钻 115 5.36 83.50 1.83 BNS00473 476900 6497400 螺旋钻 109 5.19 81.00 2.03 BNS00529 477750 6497800 螺旋钻 117 4.38 81.20 1.80 BNS00547 474800 6498200 螺旋钻 145 3.88 78.10 1.54 BNS00548 474900 6498200 螺旋钻 107 3.93 76.30 1.56 BNS00549 475000 6498200 螺旋钻 111 4.33 82.80 1.66 BNS00626 477950 6498600 螺旋钻 121 2.85 50.00 1.09 BNS00664 477000 6499000 螺旋钻 109 3.07 49.40 1.55 BNS00707 476550 6499400 螺旋钻 112 4.25 76.10 1.76 BNS00743 475400 6499800 螺旋钻 106 5.71 85.50 1.95 BNS00838 475400 6500600 螺旋钻 107 4.40 72.60 1.77 BNS00847 476300 6500600 螺旋钻 107 3.35 67.00 1.36 BNS00854 477000 6500600 螺旋钻 116 5.01 84.30 2.07 BNS00905 477350 6501000 螺旋钻 111 2.58 46.20 0.93 BNS00930 475100 6501400 螺旋钻 125 3.22 46.30 1.27 BNS00931 475200 6501400 螺旋钻 127 4.02 60.90 1.56 BNS00932 475300 6501400 螺旋钻 110 3.35 50.90 1.26 BNS01007 474900 6502200 螺旋钻 106 3.77 60.40 1.29 BNS01085 476400 6503000 螺旋钻 107 5.33 97.40 1.95
– PMID:27733139(针对 FAD3 等基因的基因组编辑实验,以改善大豆籽油) – PMID:24179142(使用 NHEJ 在斑马鱼中进行敲入基因组编辑实验) – PMID:25434822(使用基因组编辑治疗 DMD 的研究) – PMID:27050479(2016 年报告在鸡中成功使用 CRISPR-Cas9 的论文)