数据中心产生的废热,可以在地区供暖系统中使用。但是,数据中心的热供应与地区供暖系统之间的不匹配需要限制其UTI-LIZATION。此外,高峰值负载增加了地区供暖系统的运行成本。这项研究旨在通过引入热能储藏来解决这些问题。将水箱和钻孔热量储能系统选择为短期和长期的热能储存,分别为短期和长期的热量储存。能源,经济和环境指标来评估不同的解决方案。案例研究是挪威的校园供暖系统。结果表明,水箱可以将峰值负载降低31%,并将年能源成本节省5%。回报期低于15年,而存储效率仍高于80%。但是,它在减轻不匹配和CO 2减少方面没有明显的好处。相比之下,钻孔的热能储能将废热率提高到96%,并使年度CO 2排放量减少了8%。但是,投资回收期超过17年。这些结果为地区供暖系统的复古拟合提供了指南,其中数据中心的废热可用。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
数据中心产生的废热,可以在地区供暖系统中使用。但是,数据中心的热供应与地区供暖系统之间的不匹配需要限制其UTI-LIZATION。此外,高峰值负载增加了地区供暖系统的运行成本。这项研究旨在通过引入热能储藏来解决这些问题。将水箱和钻孔热量储能系统选择为短期和长期的热能储存,分别为短期和长期的热量储存。能源,经济和环境指标来评估不同的解决方案。案例研究是挪威的校园供暖系统。结果表明,水箱可以将峰值负载降低31%,并将年能源成本节省5%。回报期低于15年,而存储效率仍高于80%。但是,它在减轻不匹配和CO 2减少方面没有明显的好处。相比之下,钻孔的热能储能将废热率提高到96%,并使年度CO 2排放量减少了8%。但是,投资回收期超过17年。这些结果为地区供暖系统的复古拟合提供了指南,其中数据中心的废热可用。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
病例报告:该患者30多年前左眼曾接受过角膜内环段手术(ICRS),以矫正因扩张复发而导致的散光(2012年)。ICRS术后,患者的屈光散光度数从-9.00 D改善至-3.50 D,并保持稳定达8年。十年后,患者决定再次进行手术干预。当时的角膜内环段较小,位于瞳孔中心,且瘢痕处扩张。因此,我们决定进行DALK手术。在这些病例中,钻孔手术在原瘢痕外进行,以角膜缘和瞳孔为中心。然后,我们继续进行 Anwar 于 1974 年描述的去角膜后弹力层手动解剖,从钻孔边缘开始,目标是达到角膜中央 50 至 70 微米之间的去角膜后弹力层前平面,通过术中 OCT 或超声角膜厚度测量,然后继续向周边解剖。深层平面的解剖动作必须小心,避免在疤痕水平牵引。一旦达到中央水平的适当平面,我们必须越过 PK 的疤痕到达新钻孔的边缘,防止疤痕裂开并造成穿孔。一旦获得适当的平面,就要准备供体角膜并缝合。
电源操作的压力控制设备由油田井口机的一部分组成,即窒息,脱水剂,离心脱水剂,硫化氢泥浆泥气体分离器,用于水平钻孔的双泥气体分离器;橡胶和金属机械O形圈密封件[机器零件]用于机油和天然气勘探和生产的设备;切割机和机床,即用于切割或塑造或装饰金属或其他材料的动力机器;精确的机床,即硬金属工具,高速钢(HSS)工具,碳化物工具,陶瓷工具,多层晶体钻石(PCD)工具以及涂有钻石的钻石涂层工具以及硬金属工具,所有这些工具都用于材料切割和形成材料;机械密封[机器零件];气动电动工具,即钻,研磨机和磨坊主;采矿业的演习;电钻;气动演习;动力演习;电动工具,即铰刀;电焊接机;激光焊接机;机床,即摩擦焊接工具;摩擦焊接机;采矿机的钻头;电力钻的位;核心钻孔;采矿位;机器的工具位;轴承,作为机器的一部分;机器的滚轮轴承;泵隔膜;机器,即水泥设备,即用于石油和天然气勘探和生产的水泥搅拌机;焊接机,电动机;焊接机的电极;氢燃料电池;用于生产氢气的电解机;用于锂开采的机器;使用地热电地热力的电发电机;油气勘探和生产中使用的有线拖拉机
抽象的盐水储存量用于二氧化碳的永久存储通常处于足以在二氧化碳超临界状态内产生压力和温度的深度,从而产生两阶段的系统。气和水。从这些深盐水储层到地下经验温度和压力条件的泄漏途径,可能会产生液体两相条件;非水液和水或三相条件;气体,非水液和水性。太平洋西北国家实验室目前正在国家风险评估合作伙伴关系下开发其踩踏器模拟器的扩展,以模拟二氧化碳从深盐水储层的迁移,这是通过可能包括钻孔的泄漏途径向地面的迁移。这项工作的主要目标将是将完整的储层模拟与开放综合评估模型(OpenIAM)进行比较。对于涉及二氧化碳临界点附近的温度和压力条件的泄漏途径,快速相处,消失和过渡是可能的,这使该区域的数值解决方案变得困难。已经为踩踏模拟器开发了一种数值解决方案,该方案通过非液体液体和气相相之间的界面张力缩放来平滑毛细管压力,饱和度和相对渗透率的不连续性。此海报详细介绍了已开发的数值解决方案方案和Stomp Simulator中的实现。
孵化后,将Alevins(Yolk Sac幼虫)转移到苗圃中,在该苗圃中,将鱼在淡水中饲养到70-150g,然后转移到生长的地点。在那里,Charr是在最佳可用条件下在高质量的咸水中耕种的,直接从现场的钻孔中抽出。钻孔的水已经通过冰岛熔岩自然过滤。萨默吉(Samherji)成长的农场的合并生产能力每年约为4000吨北极Charr。在所有农场中,环境因素,例如氧气水平,盐度,密度(最大50kg/m3)和温度,并经常监测和调整,以最适合每个阶段鱼类的最佳生活条件。喂养和氧合是自动的,并且可以控制计算机,因此可以从任何地方进行监控和控制。根据我们在北极Charr农业方面的丰富经验,我们的喂养方法特别适合北极Charr的喂养习惯。来自冰岛的LaxáfefMill Ltd.(由Samherji拥有)的Feed是北极Charr野生生产中唯一使用的饲料。用于生产Laxá饲料的鱼粉和鱼油来自冰岛水域的可持续托管(MSC)鱼类种群。海洋蛋白约为饲料中总蛋白的50%,并且含有鱼类和菜籽油。没有使用动物界的其他蛋白质来源,也没有将药物添加到饲料中。唯一使用的色素是天然物质。
MDSPGP-6 活动 e (3) 土壤调查、科学测量设备和勘测活动 授权的土壤调查、科学测量设备和勘测活动必须遵守以下适用的活动特定条件、本许可证的所有一般条件以及任何特定于项目的特殊条件。 此活动授权排放疏浚或填充材料以进行土壤调查和勘测活动。 授权的勘测活动包括岩心采样、地震勘探作业、地震爆破孔和其他勘探类型钻孔的封堵、勘探性开沟、土壤调查和采样、湿地划定的样地或横断面、污水处理场的渗透测试、勘探标记或勘探纪念碑、压力计和地下水监测设备以及历史资源调查。 就此活动而言,“勘探性开沟”一词是指对上层土壤剖面进行机械土地清理以露出基岩或基质,以便对露出的材料进行测绘或采样。此外,本活动还授权排放与用于测量和记录科学数据的设备相关的疏浚或填充材料,例如标尺、潮汐和流速计、气象站、水记录和生物观测设备、水质检测和改善设备以及类似结构。本活动不授权任何永久性结构或为石油和天然气勘探而钻探和排放测试井的挖掘材料。本活动不授权为道路和其他类似活动填筑的填料。临时道路交叉口应根据第 IV.B.1.e(7) 条“临时施工通道、河流改道和排水”进行审查。钻井泥浆和岩屑的排放可能需要根据《清洁水法》第 402 条(第 10 条和/或第 404 条;美国所有水域)获得许可。A 类影响限制和要求:
摘要。可再生能源发电成本的下降,加上电解技术的进步,表明绿色氢气生产可能是正在进行的能源转型中的可行选择。然而,绿色氢经济不仅需要生产解决方案,还需要存储选项,而这已被证明具有挑战性。一种尚未得到充分探索的解决方案是在套管井或竖井中地下储存氢气 (H 2 )。它的集成将带来实施的多功能性和广泛的适用性,因为它不需要特定的地质背景。本文的目的是评估这种新存储技术的技术可行性。准确预测温度和压力变化对于设计、材料选择和安全原因至关重要。这项工作使用基于质量和能量守恒方程的数值模型来模拟套管井中的储氢操作。研究表明,腔壁处的传热强烈影响温度和压力变化。这种影响因钻孔的几何形状提供显着的接触面积而加剧。因此,这种技术可以缓解极端压力和温度变化,并且在给定压力约束的情况下产生比传统洞穴更高的氢密度。结果表明,半径为 0.2 m 时,在最大压力为 50 MPa 时可达到 30 kg m − 3 的氢密度。在 4 小时内注入时,系统在最高温度和压力方面的响应相对线性,但随着注入时间的缩短,系统很快变为非线性。优化初始存储条件似乎对于最大限度地降低冷却成本和最大限度地提高存储质量至关重要。
场地特征描述和环境监测(包括但不限于特征描述和监测设备的选址、建造、改造、操作、拆除和移除或以其他方式适当关闭(例如井),以及小型实验室建筑的选址、建造和相关操作或现有建筑中用于样品分析的房间的翻新)。此类活动将根据适用要求进行设计,并使用最佳管理实践来限制由此产生的任何地面扰动的潜在影响。涵盖的活动包括但不限于 CERCLA 和 RCRA 下的场地特征描述和环境监测。(此类活动不包括在水环境中开展的活动。有关此类活动,请参阅本附录 B3.16。)具体活动包括但不限于:(a) 地质、地球物理(如重力、磁力、电、地震、雷达和温度梯度)、地球化学和工程勘测和测绘,以及测量标记的建立。地震技术不包括大规模反射或折射测试;(b) 安装和操作现场仪器(如流量测量站或流量测量装置、遥测系统、地球化学监测工具和地球物理勘探工具);(c) 钻井以采样或监测地下水或包气带(非饱和带)、测井和在井中安装水位记录装置;(d) 含水层和地下水库响应测试;(e) 安装和操作环境空气监测设备; (f) 水、土壤、岩石或污染物的采样和特性分析(例如使用卡车或移动设备进行钻探,以及钻孔的改造、使用和封堵); (g) 水废水、空气排放物或固体废物流的采样和特性分析; (h) 气象塔的安装和操作及相关活动(例如潜在风能资源的评估); (i) 动植物采样;以及 (j) 按照 36 CFR 第 800 部分和 43 CFR 第 7 部分进行考古、历史和文化资源识别。
随着深度钻孔的增长和井文件的复杂性,对生产地层的更完整和有效的开发的要求增加,这增加了各种并发症的风险。当前,基于经过修饰的天然聚合物(自然存在的化合物)和合成聚合物(SPS)的试剂是工业上创建的聚合物化合物的合成聚合物(SPS),被广泛用于防止钻探过程中的新兴并发症。但是,与经过修改的天然聚合物相比,SPS形成了一个高分子重量化合物的家族,这些家族通过进行化学聚合反应完全合成。sps在其设计中提供了很大的灵活性。此外,可以调整它们的大小和化学成分,以提供几乎所有钻孔流体功能目标的特性。可以根据化学成分,反应类型及其对加热的反应进行分类。但是,由于其结构特性,某些SP的成本高,温度和耐盐性水平较差,并且在温度达到130 C时开始降解。这些缺点阻止SP在某些中和深井中使用。因此,本综述介绍了历史发展,特征,制造方法,分类以及SPS在钻孔流体中的应用。详细解释了SPS作为添加剂对钻孔流体的贡献,以详细解释流变学,填充物的产生,携带插条,流体润滑性和粘土/页岩稳定性。还描述了将SP添加到钻孔流体中时所实现的机制,影响和进步。还讨论了SPS在钻探流体中部署及其优势和缺点时遇到的典型挑战。经济问题也影响SPS在钻探流体中的应用。因此,评估了最相关的SP的成本以及合成中使用的单体的成本。SPS在钻孔流体中的环境影响及其制造工艺以及旨在减少这些影响的SP处理方法的进步以及其制造过程。提供了所需的未来研究解决SP财产和性能差距的建议。©2023作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。