钻石填充底部填充材料:SMT 158D8(纽约州奥尔巴尼)2021 年 1 月 18 日 YINCAE 很高兴地宣布,我们开发了 SMT 158D8,这是一种毛细管状、流动速度快的高导热底部填充材料,也是一种易于返工的液体环氧树脂。SMT 158D8 是世界上第一个(也是唯一一个)商用钻石填充底部填充材料。SMT 158D8 的导热系数为 >6 W/mK,可轻松流入小间隙,不会发生相分离,具有高耐盐湿性和出色的附着力。此外,与使用焊膏相比,SMT 158D8 跌落测试的性能提高了两个数量级。SMT 158D8 的亮点是它能够将 CPU (POP) 温度降低 10°C。该材料可用作倒装芯片、芯片级封装、球栅阵列器件、封装上封装和焊盘栅格阵列应用的底部填充材料。它还适用于各种先进封装中的裸芯片保护,例如存储卡、芯片载体、混合电路和多芯片模块。它专为高产量和以工艺速度和散热为主要考虑因素的环境而设计。如需了解有关 YINCAE 的 SMT 158D8 底部填充材料的更多信息,或要了解有关 YINCAE 产品系列的更多信息,请发送电子邮件至:info@yincae.com。您也可以访问我们的网站:www.yincae.com 了解更多信息
o要制作钻石晶体模型,您至少需要14个半长牙签。o要制作一个石墨烯单元,您将需要6个半长的牙签。背景知识钻石颜色中心:钻石是一种晶体,其中碳原子以非常强大的晶格结构排列。想象一个3D网格,每个交叉点都有一个碳原子。这种僵化的结构使钻石使他们难以置信的硬度和清晰度。每个碳原子在四面体构型中粘结到其他四个碳原子,形成了一种延伸到各个方向的重复模式。钻石晶体可以采用不同的颜色。这种缺陷会中断碳原子的常规排列,并可以吸收并发出光,这通常使钻石具有特定的颜色。这些颜色中心不仅与美学有关;它们具有独特的电子和光学性能,这些特性对于各种量子应用都很感兴趣,包括使用钻石发出的光来测量非常小的磁场(量子传感)以及编码和传输安全信息(量子通信)。石墨烯:石墨烯是在二维蜂窝晶格中排列的单层碳原子。图片由六角形组成的平板,类似于蜂窝,每个角是一个碳原子与其他三个原子结合在一起的。这种结构使石墨烯具有令人难以置信的强度,甚至比钻石更强壮,但它非常灵活且轻巧。石墨烯也是
我们考虑统一量子通道的过程断层扫描。给定对作用于D维Qudit的未知统一通道的访问,我们旨在输出对ε-close的统一的经典描述,即ε-close的钻石规范中未知的统一。我们使用未知通道的O(D 2 /ε)应用来设计算法实现误差ε和仅一个Qudit。这改善了先前的结果,这些结果使用O(D 3 /ε2)[通过标准过程断层扫描]或O(D 2。< /div>)5 /ε)[Yang,Renner和Chiribella,Prl 2020]应用。为了显示此结果,我们引入了一种简单的技术来“引导”一种算法,该算法可以通过Heisenberg缩放来产生可以产生εError估计的恒定估计值。最后,我们证明了一个互补的下限,即使访问未知统一的逆版本或受控版本,估计也需要ω(D 2 /ε)应用。这表明我们的算法既具有最佳的查询复杂性又具有最佳空间复杂性。
为了最大程度地减少或消除沟槽,最好有利于蚀刻过程的化学成分。因此,我们决定继续使用ICP-RIE进行O 2等离子体蚀刻,这是因为在表面形态和各向异性蚀刻方面具有令人鼓舞的结果,因此我们已经研究了血浆参数的影响ICP和偏置功率,尤其是使用两种类型的口罩:铝和硅二氧化物(Sio-dioxide)(Sio 2)。3- O 2在Sentech Si500-Drie设备上进行了用铝面膜钻石蚀刻的等离子体蚀刻。测试样品是(100)方向的单晶CVD钻石底物和元素六的3 x 3 mm 2尺寸。第一步涉及溶剂和酸的化学清洁,以去除可能影响蚀刻和产生粗糙度的污染物。然后将钻石底物涂在光线器上,并用激光光刻降低,以定义掩模图案。然后通过热蒸发沉积700 nm厚的铝面膜。金属薄膜,例如铝,由于其在钻石上的良好粘附性[24]及其良好的蚀刻选择性[25],因此将其用作单晶钻石蚀刻的硬面膜材料。此外,由于血浆中的寿命不足,尤其是在氧气中,因此与光致剂相比,金属面膜仍然是更好的选择。3.1 o 2等离子蚀刻的p icp = 500W和p偏见= 5W我们研究的第一个蚀刻条件是:p icp = 500 w,p sial = 5 w,压力= 5吨,气体流量= 25 sccm,温度= 18°C。每个蚀刻步骤都限制为30
电载体及其高热分率[8]和机械功能使石墨烯高度用途。结合钻石和石墨烯的显着性在于具有最好的两者的可能性:钻石的绝缘和热散热性能以及墨料的出色电气特性。钻石表现出165 MeV的高光音子能量。[9]此属性对于钻石上的石墨烯设备可能至关重要,因为石墨烯层中的载流子迁移率通常受到源自底物的光学声子散射的限制。高光学声子能量意味着在RT处很少有光学声子,导致低散射速率。与常规的SIO 2 /Si和SIC相比,DIAMOND作为底物的其他好处包括其具有较低陷阱密度的化学惰性表面。作为钻石上石墨烯设备的底物,由于其可伸缩性可能性和较低的缺陷密度,化学蒸气沉积(CVD)钻石优于高压高温(HPHT)。[10]石墨烯和钻石的非凡特性引起了人们对将这些材料集成到电子和量子应用中的兴趣。[11]
摘要:钻石中的颜色中心在量子技术中具有广泛的实用性,但它们的创造过程本质上仍然是随机的。确定性创建可以使用设备就绪的钻石平台中的颜色中心可以提高产量,可扩展性和集成。使用脉冲激发激发的最新工作在确定性地造成散装钻石的缺陷方面表现出了令人印象深刻的进步。在这里,我们将这种激光写入过程扩展到刻在钻石膜中的纳米光子设备中,包括纳米骨和光子谐振器,并在低温温度下以书写和随后的读数进行写作。我们证明了钻石纳米木中心的碳空位(GR1)和氮空位(NV)中心的光学驱动创建,并从中观察到增强的光致发光收集。我们还制造了靶标谐振器,并利用其腔模式来局部放大激光编写场,从而使用Picojoule Write-Pulse Energies产生缺陷,比在散装钻石演示中通常使用的脉冲能量低100倍。关键字:激光写作,钻石纳米光子学,颜色中心,空腔耦合,牛乳天线,纳米质
目标是开发一种先进的传感工具,以提高半导体芯片检查的精度,减少芯片故障,提高能源效率。量子钻石微芯片成像仪类似于磁共振成像(MRI),可对半导体芯片进行非侵入式和非破坏性成像,克服了传统方法在芯片尺寸减小时检测异常的局限性。它利用钻石中的氮空位中心以及专门的硬件和软件,大大增强了故障分析、设备开发和优化过程。它还可以可视化多层芯片中的三维电荷流,以实现高级缺陷识别。它将在微电子、生物和地质成像以及磁场精细成像等领域得到广泛应用。
量子信息技术提供了通过在量子计算机之间分布纠缠的安全渠道来实现未经原理的计算资源的潜力。Diamond作为可光学访问的旋转Qubt的主机,是一个领先的平台,可以实现扩展此类量子链接所需的量子存储节点。光子晶体(PHC)腔增强了光质的相互作用,对于分别用于存储和传达量子信息的旋转和光子之间的有效界面至关重要。在这里,我们演示了用薄膜钻石制造的一维PHC腔,分别具有1.8×10 5和1.6×10 5的质量因子(Q),是任何材料中实现的可见PHC腔最高QS。重要的是,基于常规的平面制造技术,我们的制造过程是简单且高收益的,与先前的复杂底切工艺相反。我们还展示了具有高光子提取效率的纤维耦合的1D PHC腔,以及单个SIV中心和在4 K时的此类腔之间的光学耦合,达到18。purcell系数。所证明的光子平台可能从根本上提高量子节点的性能和可扩展性,并加快相关技术的开发。
wding@g.harvard.edu; loncar@seas.harvard.edu; ahigh@uchicago.edu摘要量子信息技术提供了通过能够在量子计算机之间分配纠缠的安全渠道实现前所未有的计算资源的潜力。Diamond作为具有光学上可访问的自旋量子的原子状缺陷的主机,是一个领先的平台,可以实现扩展量子链路范围所需的量子存储节点。光子晶体(PHC)腔增强了光 - 物质的相互作用,并且是分别用于存储和传达量子信息的旋转和光子之间有效界面的必要成分。尽管付出了巨大的努力,但是在钻石中,实现具有高质量因子(Q)和设计灵活性的可见PHC腔。在这里,我们展示了在最近开发的薄膜钻石中制造的一维PHC腔,分别具有1.8x10 5和1.6x10 5的Q因子,这是任何材料中实现的可见PHC腔最高的QS。重要的是,基于常规的平面制造技术,我们的制造过程是简单且高收益的,与以前依赖复杂底切方法的方法相比。我们还展示了具有较高光子提取效率的纤维耦合1D PHC腔,以及单个SIV中心和在4K处的此类腔之间的光学耦合,达到13。所展示的钻石薄膜光子平台将提高量子节点的性能和可伸缩性,并扩展量子技术的范围。简介