摘要。- 传统的反癌治疗远非令人满意。迫切需要将新的治疗剂与传统治疗方法结合起来,以提高抗癌的效力。铁凋亡是一种依赖铁的非凋亡细胞死亡类型的新型类型,仍然可以为凋亡失败和坏死诱导治疗的患者提供良好的效果。铁在诱导铁铁作用过程中起着维特作用。虽然铁是癌症治疗中的双重剑,但铁的特异性分布尤其重要。纳米技术是帮助靶向分布的药物的有效方法。我们打算回顾铁腐病和基于铁的纳米疗法的最新进展。首先,简要审查了铁凋亡与铁代谢之间的关系,以证明铁在铁吞作用诱导中的核心作用。第二,根据不同的设计提出和讨论了基于铁的纳米技术的纳米技术进展。最后,人们对基于铁的纳米疗法对铁铁作用的未来期望得到了焦点。
大肠疾病属由几种物种和神秘的进化枝组成,包括e。大肠杆菌,表现为脊椎动物的肠道共生,也是腹泻和肠外疾病的机会性病原体。为了表征该属内肠外毒力的遗传确定者,我们对代表Escherichia Genus Genus Genologenogencementic多样性的370个共生,致病性和环境菌株进行了一项无偏的基因组研究(GWAS)研究(GWAS)。albertii(n = 7),e。fergusonii(n = 5),大肠杆菌(n = 32)和e。大肠杆菌(n = 326),在败血症的小鼠模型中进行了测试。我们发现,编码Yersiniabactin siderophore的A高致病岛(HPI)的存在与小鼠的死亡高度相关,与其他相关遗传因素相关,也超过了与铁的摄取相关的其他相关遗传因素,例如Aerobactin和Sitabcd operons。我们通过删除e中HPI的关键基因来确认体内关联。大肠杆菌菌株在两个系统发育背景下。然后,我们在E的一部分中搜索了毒力,铁捕获系统和体外生长之间的相关性。大肠杆菌菌株(n = 186)先前在生长条件下表型,包括抗生素以及其他化学和物理胁迫。我们发现,在存在大量抗生素的情况下,毒力和铁捕获系统与生长呈正相关,这可能是由于毒力和耐药性的共选择。我们还发现在存在特定抗生素的情况下毒力,铁摄取系统与生长之间的负相关性(i。e。头孢霉素和毒素),这暗示了与内在毒力相关的潜在“侧支敏感性”。这项研究表明铁捕获系统在大肠疾病的肠外毒力中的主要作用。
先前的实验提供了分别在二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现通过激光照明,在H -BN双层中令人惊讶的0.5 ps中可以实现垂直铁电的完全逆转。综合分析表明,铁电偏振转换源自激光诱导的层间滑动,这是由多个声子的选择性激发触发的。从上层n原子的P z轨道到下层B原子的P z轨道的层间电子激发产生所需的方向性层间力,激活了平面内光学TOTO TOTO TOS TOTO to-1和LO-1声音声模式。由TO-1和LO-1模式的耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能表面并导致超快铁电偏振反转。我们的工作为滑动铁电的超快偏振转换提供了一种新颖的微观见解。
松山驻屯地における売店の设置及び経営に关する业者の招募集について爱媛県松山市南梅本町乙107に所在する上自卫队山松驻屯地で行われる凉纳祭における模拟売店を次のとおり募集します。 1 応招募资格 (1) 防卫省竞争参加资格(全省庁统一资格)又は同等の资格を有すること。 (2) 「暴力団排除に关する誓约书」を提出すること。 2 招募集売店数 (1) 招募集売店数 6 个売店(基准) (2) 使用面积可能 1空间につき18㎡(6m×3m) 3 営业时间等 (1) 日 时
我们研究了限制具有金属/铁电/夹层/Si (MFIS) 栅极堆栈结构的 n 型铁电场效应晶体管 (FeFET) 耐久性的电荷捕获现象。为了探索电荷捕获效应导致耐久性失效的物理机制,我们首先建立一个模型来模拟 n 型 Si FeFET 中的电子捕获行为。该模型基于量子力学电子隧穿理论。然后,我们使用脉冲 I d - V g 方法来测量 FeFET 上升沿和下降沿之间的阈值电压偏移。我们的模型很好地符合实验数据。通过将模型与实验数据拟合,我们得到以下结论。(i)在正工作脉冲期间,Si 衬底中的电子主要通过非弹性陷阱辅助隧穿被捕获在 FeFET 栅极堆栈的铁电 (FE) 层和夹层 (IL) 之间的界面处。 (ii) 基于我们的模型,我们可以得到在正操作脉冲期间被捕获到栅极堆栈中的电子数量。 (iii) 该模型可用于评估陷阱参数,这将有助于我们进一步了解 FeFET 的疲劳机制。
1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系 Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。