[1] M. Yousefi,S。Manouchehri,A。Arab,M。Mozaffari,G.R。amiri,Amighian,钴 - 锌铁酸盐的制备(CO 0.8 Zn 0.2 Fe 2 O 4)纳米植物通过燃烧法及其磁性特性的研究,物质研究公告,45(2010)1792-1795。[2] O. Hemeda,M。Barakat,跳跃速率和跳跃电子长度对Co – Cd铁氧体的电导率和介电性能的跳跃长度,《磁和磁性材料杂志》,223(2001)127-132。[3] J. Tong,W。Li,L。Bo,H。Wang,Y。Hu,Z。Zhang,A。Mahboob,苯乙烯的选择性氧化,由葡萄干掺杂的钴铁氧体纳米晶体催化,具有大量增强的催化性能,催化性催化性,杂志,344(344(2016)474--444-481。[4] M. Amiri,M。Salavati-Niasari,A。Akbari,磁性纳米载体:用于医疗应用的尖晶石铁氧体的进化,胶体和界面科学的进步,265(2019)29-44。[5] K.C.B.Naidu,S.R。 Kiran,W。Madhuri,微波处理的Nimgzn铁氧体用于电磁互力屏蔽应用,IEEE Transactions Magnetics。,53(2016)1-7。 [6] H.R. Ebrahimi,H。Usefi,H。Emami,G.R。 amiri,铜镉铁素纳米颗粒的合成,表征和感应性能研究,IEEE Transactions Magnetics。,54(2018)1-5。 [7] N. Chaibakhsh,Z。Moradi-Shoeili,尖晶石取代的纳米甲硅氟甲烷的酶模拟活性(MFE 2 O 4):综合,机制和潜在应用,材料科学和工程学的综述:C,99(2019)1424-1447。Naidu,S.R。Kiran,W。Madhuri,微波处理的Nimgzn铁氧体用于电磁互力屏蔽应用,IEEE Transactions Magnetics。,53(2016)1-7。[6] H.R.Ebrahimi,H。Usefi,H。Emami,G.R。 amiri,铜镉铁素纳米颗粒的合成,表征和感应性能研究,IEEE Transactions Magnetics。,54(2018)1-5。 [7] N. Chaibakhsh,Z。Moradi-Shoeili,尖晶石取代的纳米甲硅氟甲烷的酶模拟活性(MFE 2 O 4):综合,机制和潜在应用,材料科学和工程学的综述:C,99(2019)1424-1447。Ebrahimi,H。Usefi,H。Emami,G.R。amiri,铜镉铁素纳米颗粒的合成,表征和感应性能研究,IEEE Transactions Magnetics。,54(2018)1-5。[7] N. Chaibakhsh,Z。Moradi-Shoeili,尖晶石取代的纳米甲硅氟甲烷的酶模拟活性(MFE 2 O 4):综合,机制和潜在应用,材料科学和工程学的综述:C,99(2019)1424-1447。[8] O. Opuchovic,G。Kreiza,J。Senvaitiene,K。Kazlauskas,A。Beganskiene,A。Kareiva,Sol-Gel合成,选定亚微米化的灯笼的表征和应用(CE,CE,PR,PR,PR,PR,ND,TB,TB)Ferrites,dyes,dyes和Pigments和Pigments和Pigments,118(118),176-22222.2222。
应使用增益,光圈和辐射抗性的概念对任何空中进行的完整分析,但这种方法在回答以下简单问题时曲折途径。“如果铁岩杆天线位于每米的强度E伏的辐射场,并且P.D.在线圈端子上是v伏特,我们如何找到适合关系的有效长度l v = le?”这是一个公平的问题,但是,从电磁理论和航空设计的文献中几乎没有得到理解。有一种相当简单的解决方案方法,该方法将在本文的后面介绍,但首先检查了更简单的结构,环或框架空中。假设一个循环与波长相比,大小很小,n圈封闭了一个平方米的区域,其平面与发射器一致。然后,传输磁场将正常通过a,如果没有从线圈中取出电流,则P.D。可以根据变化法则计算。如果磁场为h = hm sin 2trft 2trft,则链接的通量为µDAH,并且P.D.是
摘要:荧光检测是目前世界范围内常用的技术之一。本文讨论了一种有趣的复合材料的制备和光学特性。结果表明,将溶胶-凝胶自燃法获得的钴尖晶石铁氧体 (CoFe 2 O 4 ) 封装到聚[二苯基-甲基 (H)]硅烷基质中,可得到具有有趣光学特性的氟磁性粒子 (PSCo)。透射电子显微镜结合能量色散 X 射线分析显示,500 nm 大的球形结构包含一个由磁性铁氧体颗粒组成的核心(直径约 400 nm),周围包裹着一层薄薄的半导体荧光聚合物。所获得的材料表现出亚铁磁性。FTIR 光谱证实聚硅烷的 Si-H 功能得以保留。紫外光谱结合分子建模研究表明,磁芯对 σ 共轭聚硅烷分子内电子跃迁特性有很强的影响。稳态荧光光谱的进一步分析表明,内部磁场大大增强了聚硅烷的发射。未来将进一步研究这一特性,以开发新的检测装置。
电感器和变压器磁芯由软磁材料制成。“软”磁材料很容易磁化和消磁,并且只有在通过改变缠绕在其周围的绕组(或“匝”)中的电流来激发这些磁芯并产生电磁场时,才会出现磁场。术语“软”表示磁场不是永久的,当电流停止时磁场就会消失。这与我们通常所说的磁铁不同。“永久”磁铁通常用于拾取或将物体附着在含铁(铁质)金属上(例如冰箱磁铁),并且无需绕组或外部刺激即可产生永久磁场。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
摘要 本研究获得了基于铁电磁 PbFe 1/2 Nb 1/2 O 3 粉末和铁氧体粉末(锌镍铁氧体,NiZnFeO 4 )的多铁性(铁电-铁磁)复合材料(PFN-铁氧体)。陶瓷 PFN-铁氧体复合材料由 90% 粉末 PFN 材料和 10% 粉末 NiZnFeO 4 铁氧体组成。陶瓷粉末采用传统工艺方法合成,采用粉末煅烧,而复合粉末的致密化(烧结)采用两种不同的方法进行:(1)自由烧结法(FS)和(2)放电等离子烧结(SPS)。对复合 PFN-铁氧体样品进行了热测试,包括直流电导率和介电性能。此外,还在室温下测试了复合材料样品的 XRD、SEM、EDS (能量色散谱) 和铁电性能 (磁滞回线)。在工作中,对用两种方法获得的 PFN-铁氧体复合材料样品的测量结果进行了比较。多铁性陶瓷复合材料的 X 射线检查证实了来自复合材料铁电 (PFN) 基质的强衍射峰以及由铁氧体组分引起的弱峰。同时,研究表明不存在其他不良相。这项研究的结果表明,通过两种不同的烧结技术 (自由烧结法和放电等离子烧结技术) 获得的陶瓷复合材料可以成为功能应用的有前途的材料,例如,用于磁场和电场传感器。
上述外壳尺寸为典型尺寸。具体尺寸取决于订单数量。 9. ! 注意 9-1.浪涌电流 施加到产品上的浪涌电流(脉冲电流或冲击电流)超过规定的额定电流可能会导致严重故障,例如开路、因温度过高而烧毁。如果施加浪涌电流,请提前联系我们。 9-2. 应用限制 在将我们的产品用于下列需要特别高可靠性的用途之前,请与我们联系,以防止可能直接对第三方的生命、身体或财产造成损害的缺陷。 (1)飞机设备 (2)航空航天设备 (3)海底设备 (4)发电厂控制设备 (5)医疗设备 (6)防灾/防盗设备 (7)交通信号设备 (8)运输设备(汽车、火车、轮船等) (9)数据处理设备 (10)与上述用途具有相似复杂性和/或可靠性要求的用途 10. 注意事项 本产品设计为焊接安装。如需使用导电粘合剂等其他安装方法,请提前咨询我们。 10-1. 焊盘图案设计 标准焊盘尺寸(流动和回流焊接) 焊接 a b c
‧ 保管条件(元件级) 为维持端子电极的可焊性,请遵守下列事项: 1.TAI-TECH 产品符合 IPC/JEDEC J-STD-020D 标准-MSL,等级 1。2.温度及湿度条件:低于 40 及 60% RH。℃ 3.建议产品于交货后 12 个月内使用。4.包装材料应存放在空气中不含氯或硫的地方。‧ 运输 1. 产品应小心处理,避免因汗水及皮肤油脂造成损坏或污染。2.强烈建议使用镊子或真空吸盘来吸取个别元件。3.散装处理应确保将磨损和机械冲击降至最低。
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。