对于超导量子计算中使用的常见材料和薄膜厚度,截止频率在几十 GHz 到几 THz 的范围内。例如,在 Al(用于实现约瑟夫森结(超导 QPU 的核心元素)的最常见材料)中,截止频率约为 80 GHz。为了保护 QPU,已经实施了各种滤波策略,包括基于磁加载电介质或铜粉的吸收滤波器(在 QPU 的输入线上)和铁氧体循环器(在从 QPU 到信号放大级的输出线上)。由于其在通带中的超低损耗,HERD-1 可以集成在将 QPU 连接到更高温度级的所有信号线中,从而减少热干扰并为 QPU 提供卓越的性能。
采用简单的化学氧化法在优化的实验条件下制备 MnFe 2 O 4 磁性纳米粒子 (MNPs)。通过在化学反应过程中引入铁离子作为尺寸减小剂来减小粒径。MnFe 2 O 4 MNPs 的饱和磁化强度在 45 到 67 emu/g 之间调整。透射电子显微镜 (TEM) 显微照片证实了粒度分布的变化。用较高浓度的铁离子制备的较小尺寸 MnFe 2 O 4 MNPs 实现了 415 F/g 的最高比电容。结果表明,铁离子可用于通过化学氧化法控制铁氧体的尺寸,并且尺寸减小的 MnFe 2 O 4 MNPs 可能是电化学超级电容器应用的合适选择。2020 Elsevier BV 保留所有权利。
x cd x x fe 2 o 4(x = 0.00,0.01,0.01,0.03,0.05,0.07,0.09)由共同途径准备。准备后,样品在温度900°C下烧结6小时。不同的表征技术,例如XRD(X射线划分),FTIR(傅立叶转换 - 红外 - 光镜检查),UV-VIS。和IV-特征术用于探索掺杂元件(CD)对纳米粒子的电,结构和光学特性的影响。XRD数据证实了Fe2O3的第二阶段的材料的单相,平均晶体大小在38.09-45.15 nm的范围内。在8.4471Å到8.4763Å中发现的准备材料的平均晶格常数值。在FTIR数据中,在所有样本中都发现了一个突出的频段,在某些样品中,在400-4000cm-1的范围内发现了第二个频段。IV观察性揭示了DC抗药性对温度的依赖性以及在0.1365到0.4332 EV/1000K的范围内的活化能值(∆𝐸𝐸)的依赖性。紫外线。分析证实了平均波长286 nm的所有样品的吸收峰。在此波长吸收下,所有样品的吸收范围为2.8722-3.2956(A.U)。CD浓度负责减少饱和磁性和损耗的降低。由于合适的特性,这些材料在录制媒体,高频应用和电子工程等许多分支等不同领域都有用。(2024年10月16日收到; 2024年12月11日接受)关键词:纳米结构,共凝结法,XRD,晶体大小,电阻率,激活能量1.引言尖晶石铁氧体是一类带有通用式AB 2 O 4的磁性材料,其中A和B代表不同的金属阳离子,O是氧。它们具有称为尖晶石结构的立方晶体结构,以矿物尖晶石的名字命名。尖晶石铁氧体表现出磁性,电气和结构特性的组合,使其在广泛的应用中有用,包括磁性存储,变压器,电感器和生物医学设备[1]。
印度理工学院 Kharagpur 分校材料科学中心的 S. Ram 博士发表了题为“什么是混合纳米复合材料,它是工程科学和技术”的互动讲座。他的研究兴趣包括开发不同类型的玻璃/陶瓷、磁性陶瓷、金属间化合物、纳米流体、石榴石磁光材料、金属陶瓷、高能量密度磁体、铁氧体、超导体、磁传感器、GMR、GMS 和 GMC 材料、储能材料、固体燃料、纳米结构固体、纤维和复合材料、自旋电子学、光子学。演讲者很好地强调了材料科学与技术在开发材料(尤其是磁性应用)方面的结合,参与者可以在开发用于储能应用的新型磁性材料时使用这种结合。
近年来,碳相关材料被提出用于改善半导体基质中光生载流子的电荷分离和表面性能。碳相关材料可以作为助催化剂,增强污染物在表面的吸附,改善载流子的分离和光催化剂的稳定性,为光催化反应提供更多的活性中心。本综述总结了碳相关材料的制备和环境应用的最新进展。重点介绍了碳相关材料和磁性碳相关光催化材料的制备,这些材料在外部磁场净化过程后易于分离,并应用于降解不易生物降解的新兴污染物。本研究确定了四大类水污染物:农药、药品、工业化学品和重金属。其中,药品和酚类化合物是一类重要的持久性有机污染物。一些常用于人类健康的药物以及消毒剂在废水进水和出水中(净化过程后)几乎以不变的形式存在。它们的痕量(每升约几微克到几百纳克)检测和去除变得困难但重要,因为它们危及处理过的废水的再利用和水循环管理的可持续性。就浓度水平而言,这些化合物被归类为危险化合物,因为即使是痕量,也有可能对生物体产生生物累积、生物放大和毒性影响。到目前为止,已经报道了从水系统中去除药物和酚类化合物的各种方法。属于高级氧化过程 (AOP) 组的异相光催化是用于降解新兴污染物的最有前途的方法之一。引入磁性铁氧体改性的碳相关材料可以显著提高新兴污染物的降解效率。本综述为未来研究碳相关材料和磁性碳相关材料在去除活性药物成分和酚类化合物中的应用提供了连贯的信息。在碳基材料与磁性铁氧体结合以及它们与SR-(AOP)和Fenton- 结合存在下药物和酚类化合物光降解的见解
基于聚(乙烯基氟化物-co-trifluoroethelene)/钴铁液,P(VDF-TRFE)/COFE 2 O 4的喷雾印刷磁电(ME)复合材料的性能。表明,对于20 wt。%铁氧体含量,复合材料表现出纤维状孔结构,≈1.8GPA Young的模量,11.2 EMU.G -1,6.0 EMU.G -1磁性磁性和2050 OE的磁性磁性的饱和磁化。此外,证明了34个介电常数(在10 kHz时)和27 pc.n -1压电系数。在2450 OE的最佳磁场下,如此高的介电和压电响应解释了21.2 mV cm -1 oe -1的ME响应,这比通过bar涂层制备的相似复合材料的响应优于。高ME响应和简单可扩展的打印方法证明了这些材料对于具有成本效益和大规模传感器/执行器应用的适用性。
基于新的实验观察结果,对影响316L不锈钢组件的激光粉末床融合添加剂制造的因素进行了全面分析。与现有的假设相反,研究表明,固化模式和粉末中纳米氧化物的存在都没有足以充分阐明观察到的谷物细化。相反,这项研究突出了强烈铁氧体形成组成与同时存在Mn-Si纳米氧化物之间的复杂相互作用,这是微结构改进过程的重要贡献者。这项研究探讨了涉及纳米氧化物的异质成核机制的作用,并为激光粉末床融合过程中的固化机制提供了新的见解,从而增强了我们对激光粉末床融合过程中微观结构控制的理解,并为高级材料工程提供新颖的观点。
摘要 - 非线性传输线(NLTL)是射频(RF)生成的新技术。被称为旋风磁线的负载铁氧体NLTL使用螺线管提供外部磁性偏置。在太空应用中,特别是在卫星中,需要用永久磁铁更换这些螺线管,这是可取的,消除了对直流电流源的需求,并减少了发射的重量和有效成本。这项工作研究并选择了该应用的永久磁铁,然后对磁铁组装进行了计算,以分析生成的磁场并获得了均匀的场区域以满足NLTL操作规格。为此,我们采用了选择图表,以适当选择用于通过电磁软件CST Microwave Studio模拟的磁铁排列的材料。在18.5 cm和58.8 cm上延伸的区域中均匀变化的磁场分别为26.6 cm和68.0 cm,在模拟中分别相对应。
SuperDuplexStainlessStainlessSteelShavEseen增加了InpastDecades的侵害,使得Quireboth具有出色的机械性能和耐腐蚀性。双链钢的特性在很大程度上取决于它们的热史,这可以产生各种奥氏体与铁素铁岩的比率;而最佳特性通常需要接近50-50的铁氧体 - 奥斯特式复式微观结构。添加剂制造过程涉及大型热梯度,因为新材料在已经印刷的材料的顶部融化了,而热历史记录取决于过程参数。由于平衡相比值在很大程度上取决于温度,因此结果是报告的相比范围很广,从奥氏体的可忽略不计到大于60%。因此,重要的是要理解和预测相比如何取决于过程参数。我们使用激光金属粉末定向能量沉积(LMPDED)添加剂制造技术评估使用恒定过程参数的SAF 2507 SAF 2507 SAF 2507超级不锈钢的微观结构。印刷后的微结构分析揭示了奥氏体相位分数的梯度,这是距构建平台距离的函数。此数据揭示了在制造过程中铁氧体对奥斯丁岩的热历史与固固相变之间的关系。壁中每个位置的热历史是通过先前的快速数值模拟(在此贡献中得到改善)建模的,并且已经开发了基于半分析方法的快速消化控制的固相变相变模型。相比的数值结果与实验观察合理一致。 提出的模拟策略很快就可以调整过程参数,以实现相比的目标分布,以促进超级双层不锈钢的添加剂制造,并且已经提出了基于此基础的构建平台的温度控制策略,以达到几乎均匀的均匀的50-50相比率。相比的数值结果与实验观察合理一致。提出的模拟策略很快就可以调整过程参数,以实现相比的目标分布,以促进超级双层不锈钢的添加剂制造,并且已经提出了基于此基础的构建平台的温度控制策略,以达到几乎均匀的均匀的50-50相比率。
背景:目前,没有任何商用现货 (COTS) 电感器材料或空心电感器能够令人满意地满足未来海军电力和能源系统在功率处理、效率、体积效率和温升方面的需求。这一不可否认的结论不仅需要新材料,还需要一种新的超高频材料设计范例,以捕获 250 MHz 或更高的带宽。需要专注于开发用于电感器的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感器。此外,截止频率和磁导率/磁化(电感器饱和电流)具有反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以更低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,具有更高磁导率的样品