Moyu Chen 1 † , Yongqin Xie 1 † , Bin Cheng 2* , Zaizheng Yang 1 , Xin-Zhi Li 3 , Fanqiang Chen 1 ,
摘要:初期的铁电特性已经成为一种有吸引力的功能材料,因为它们的潜力是为外来的铁电行为而设计的,因此具有巨大的希望,可以扩大铁电家族。然而,到目前为止,他们的人工设计的铁电性远远远远没有与经典的铁电抗衡。在这项研究中,我们通过制定超细纳米域工程策略来应对这一挑战。通过将这种方法应用于基于SRTIO 3的膜的代表性初期铁电膜,我们实现了前所未有的强大铁电性,不仅超过了先前的初期铁电磁记录,而且还可以与经典的铁电极相媲美。,薄膜的不分极化可达到17.0μccm-2,超高的居里温度为973 K.原子尺度研究阐明了这种强大的高密度超细性纳米域在跨越3-10个单位细胞中这种强大的高密度超细性纳米域中这种强大的铁电性的起源。将实验结果与理论评估相结合,我们揭示了潜在的机制,在这种机制中,有意稀释的外国FE元素可以很好地产生更深的Landau能量,并促进了极化的短期排序。我们开发的策略显着简化了非常规铁电的设计,为探索新的和上级铁电材料提供了多功能途径。
1材料科学与工程与材料研究所,宾夕法尼亚州立大学 - 宾夕法尼亚大学公园,16802,美国2,美国2宾夕法尼亚大学化学系 - 宾夕法尼亚大学 - 宾夕法尼亚大学,19104年,19104年,19104年,美国3号材料科学与工程系,宾夕法尼亚州31. penns -penn -pennia -penn -pennia -pennia -pennia -pennia -pennia -pennia -pennsy -pennia -pennsy -pennia -pitburgh,pictburgh,pitturgh,pictburgh,pitturgh,pitturgh,pitturgh普渡大学机械工程和birck纳米技术中心 - 印第安纳州拉斐特47907,美国5微型系统工程,科学与应用,桑迪亚国家实验室 - 新墨西哥州阿尔伯克基,新墨西哥州87123,美国6 6美国材料科学与工程系,弗吉尼亚州材料科学系 - 弗吉尼亚州材料部 - 弗吉尼亚州弗吉尼亚州弗吉尼亚州及其弗吉尼亚州22222.120900404,田纳西州,诺克斯维尔 - 诺克斯维尔田纳西州,37916,美国8纳米相材料科学中心,橡树岭国家实验室-Oak Ridge,TN,37830,U.S.A)作者应向谁进行处理:jac5956@psu.edu
通过其对低对称晶体相的依赖性,铁电性本质上是与给定材料相关的相位图较低温度范围的特性。本文提供了结论性的证据,即在铁电Al 1-X SC X N的情况下,低温必须被视为纯粹的术语,因为确认其铁电到 - 偏移过渡温度可以超过1100°C,因此几乎任何其他任何其他薄膜。我们通过研究0.4-2μm厚的Al 0.73 SC 0.73 SC 0.27 N膜在MO底部电极上通过原位高温X射线衍射和渗透者测量在MO底部电极上生长的结构稳定性得出了这一结论。我们的研究表明,在整个1100°C退火循环中,Al 0.73 SC 0.27 N的Wurtzite型结构是通过恒定的C / A晶格参数比率可见的。原位介电常数测量最多执行的1000°C强烈支持此结论,并包括仅在测量间隔非常上端的发散介电常数的开始。我们的原位测量值通过原位(扫描)透射电子显微镜以及极化和容量滞后测量得到很好的支持。这些结果证实了在完整的1100°C退火处理过程中铭刻极化的稳定性旁边的尺度上的结构稳定性。因此,Al 1-X SC X n是第一个容易获得的薄膜铁电薄膜,其温度稳定性几乎超过了微技术中发生的所有热预算,无论是在制造过程中还是设备的寿命,即使在最恶劣的环境中也是如此。