当前的集成钢制过程分为两个主要阶段。铁矿石首先在爆炸炉中减少,并在随后的步骤中除去杂质。由于爆炸炉的炉灶饱和,氧部分压力很低,并且杂质元素(例如P和Si)与FE一起减小。尤其是,几乎所有存在的矿石中存在的P均简化为其元素形式,并且必须在稍后在钢制过程中重新氧化以将其作为炉渣清除。近年来,钢制造的原材料的质量降低了,尤其是铁矿石中的P浓度增加了。1)同时,对高质量和极低钢的需求增加了,这反过来又对钢制造业构成了重大挑战。2)据相肯定,需要一种有效的方法从下部原材料生产低P钢是一个紧迫的问题。作者先前提出了一个在降低喷速炉之前从铁矿石中去除P的过程,该过程在低于当前的钢化过程的温度下进行。3–5)图1显示了使用热力学软件事实6.4进行计算的结果。它显示了还原平衡组成对氧部分压的依赖性和含有原材料的喷速炉温度的依赖性。
13.1 概况 205 13.2 人口 206 13.2.1 � 人口概况 206 13.2.2 � 预期人口变化 207 13.3 哈默斯利新增永久性就业岗位 207 13.4 建筑营地 207 13.4.1 � 设施 207 13.4.2 � 建筑劳动力 210 13.5 原住民就业 210 13.6 人口变化的影响 212 13.7 经济概况 213 13.7.1 � 概况 213 13.7.2 � 服务和贸易 213 13.7.3 � 旅游业 213 13.7.4 � 交通运输 214 13.8 公众参与中提出的问题 214 13.8.1 � 关注点摘要 214 13.8.2 � 关于公众参与的评论 216 13.8.3 � 关于下游处理的评论 217 13.9 包括无开发选项在内的社会影响 217 13.9.1 � 原住民社区 217 13.9.2 � 牧民 219 13.9.3 � 皮尔巴拉和珀斯一般社区 219 13.10 净收益分析 220
电流[12–14]。此外,铜铁矿 PdCoO 2 和 PtCoO 2 被证明是导电性最强的氧化物。例如,Kushwaha 等人 [15] 在室温下测定了 PtCoO 2 的电阻率ρ低至 2.1 µΩ cm,这是迄今为止报道的氧化物的最低值。此外,在低温下,其电导率接近 Cu、Ag 和 Au 等金属的电导率。[15,16] 这些铜铁矿由二维 Pd 和 Pt 片组成,通过八面体配位的 CoO 2 连接。由于这种结构,它们的电导率具有强烈的各向异性,并且在 (ab) 平面内最高。此外,Kitamura 等人[17] 通过从头计算预测了 PtCoO 2 中存在较大的本征自旋霍尔效应,这使其成为一种有趣的材料,可用于制造铁磁赛道等自旋电子器件,在这些器件中,自旋霍尔效应可用于产生自旋电流。[18–22]
13.1 概况 205 13.2 人口 206 13.2.1 人口概况 206 13.2.2 预期的人口变化 207 13.3 哈默斯利新的永久性工作岗位 207 13.4 建筑营地 207 13.4.1 设施 207 13.4.2 建筑劳动力 210 13.5 原住民就业 210 13.6 人口变化的影响 212 13.7 经济概况 213 13.7.1 概况 213 13.7.2 服务和贸易 213 13.7.3 旅游业 213 13.7.4 交通运输 214 13.8 公众参与中提出的问题 214 13.8.1 关注事项摘要 214 13.8.2 对公众参与的评论13.8.3 对下游加工的评论 217 13.9 包括无开发选项在内的社会影响 217 13.9.1 原住民社区 217 13.9.2 牧民 219 13.9.3 皮尔巴拉和珀斯一般社区 219 13.10 净收益分析 220
结果 美国环保署针对这一因素的环境目标是“保护陆地动物,以维持生物多样性和生态完整性”。在这一目标的背景下:“生态完整性”被列为生态系统的组成、结构、功能和过程,以及这些要素的自然变化范围(美国环保署,2016c)。菲律宾卫生部已将避免、最小化和恢复措施纳入提案的设计和运营流程,但对陆地动物的一些直接影响是不可避免的。该提案将导致 386.1 公顷的原生植被动物栖息地受到干扰,这些栖息地位于一个相对未开垦的景观中。所有这些植被都被认为处于良好到优良的状态,调查中没有记录到任何贫瘠或退化的植被。
Table 1 Lattice parameters of the as-prepared samples Parameters x = 0.0 x = 0.125 x = 0.25 x = 0.375 x = 0.5 β (degree) ±0.05 0.1518 0.1812 0.1940 0.2627 0.8281 D (nm) ±0.05 57.33 48.02 44.87 33.14 10.51 d (Å) 2.5234 2.5221 2.5213 2.5188 2.5149 a (Å) 8.3694 8.3647 8.3622 8.3542 8.3410 V (Å) 3 586.25 585.27 584.75 583.06 580.31 L A (Å) 3.6239 3.6219 3.6208 3.6173 3.6116 l b(Å)2.9585 2.9569 2.9560 2.9532 2.9485γ(Å)0.7495 0.7491 0.7488 0.7481 0.7469 D x(g /cm 3)5.1385 5.2448 5.2448 5.2448 5.3471 5.3471 5.4606 5.4606 5.55848 S(MON 33.15 102.15 P 227.19 190.42 177.98 131.57 41.81 𝜀0.0020 0.0020 0.0024 0.0026 0.0026 0.0036 0.0112δ×10 -4(nm -2)±0.05 3.05 3.04 4.33 4.33 4.96 4.96 9.10 9.10 90.40
冲突矿物披露 TotalEnergies SE(与其合并子公司统称“TotalEnergies”)在此根据经修订的 1934 年证券交易法第 13p-1 条(“规则”)提供披露,该规则实施与某些矿物(根据该规则称为“冲突矿物”)相关的报告和披露要求,如 2010 年《多德——弗兰克华尔街改革和消费者保护法案》所规定,报告期为 2023 年 1 月 1 日至 2023 年 12 月 31 日(“报告期”)。报告期内,“冲突矿物”在规则中定义为以下矿物(无论其地理来源如何):锡石、铌铁矿-钽铁矿(钶钽铁矿)、金、黑钨矿或其衍生物,仅限于锡、钽和钨,“涵盖国家”在规则中定义为刚果民主共和国或毗邻国家。此冲突矿物披露信息也可在 TotalEnergies 网站上公开查阅:https://totalenergies.com/sustainability/creating-shared-value/supply- chain。1
研究提供了有关在矿物富流体界面在一系列条件下的镁铁矿沉淀机理和动力学的新见解,18