特征在不同入射的光子能量下显示最大值,这是由于表面和散装特征的相对贡献4 f状态的部分密度而产生的。the ce 3 d –4 f m边缘的XAS还显示了相应的最终状态f 1和f 2特征。可以使用完整的多重计算与简化的单个Imberity Anderson模型方法一起模拟t = 25 K和300 K之间XAS光谱的弱温度依赖性。计算确认了近托筛选,并允许在CEAGSB 2中定量批量ce 4 f电子计数。CE 5 s状态显示了一种交换分裂,可反映CE 4 F状态的局部磁矩。总体结果表征了体积和表面敏感的CE 4 F状态,并表明了近代效应在形成CEAGSB 2中适度增强的重型载体载体中的作用。
在某些频率下,通过抗磁性有序的磁晶体传播的光传播可以表现出与双曲线极性子相关的各种现象。由于强烈的各向异性而出现了有趣且可能有用的现象,这是由镁质 - 波利顿共鸣驱动的强烈各向异性的,包括负折射和聚焦在扁平镜头中。在双曲介质中,这种不寻常的光学器件通常在各向异性垂直或与介质的界面平行时表现出来。然而,各向异性方向可以是控制波传播的关键药物。在这里,我们探讨了如何使用这种材料特性来大幅度修改光学现象。更具体地说,我们发现,通过将光轴的方向倾斜相对于抗铁磁晶体的表面,可以获得不对称的波传播,进而可以用来将其用于横向调节由双胞胎介质制成的平面镜头的焦点。
原子层面的磁相互作用在磁性中起着核心作用。近年来兴起的二维范德华 (vdW) 磁性材料由于其高结晶性、可调性以及可研究不同厚度的可能性,为研究磁相互作用提供了可能性[1,2],其中晶格特性可通过多种具有空间分辨率的探针轻松获取,如扫描探针和拉曼光谱[3-5]。磁相互作用最重要的指标之一是居里温度 (TC)。出于提高 TC 的实际动机,磁相互作用与 TC 之间的关系在 vdW 磁体中得到了广泛的研究。例如,通过电门控(特别是在场效应晶体管的结构中)研究了磁相互作用与电子结构和载流子浓度的变化,这改变了 Cr 2 Ge 2 Te 6 局部磁系统的磁滞曲线,而 TC 没有任何显著变化,而对于类似结构的 Fe 3 GeTe 2 流动磁系统,TC 从 205K 升高到室温以上 [6, 7]。从历史上看,
四方重费米子超导体 CeRh2As2 (Tc=0.3K) 对 Bkc 表现出 14T 的极高临界场。它在超导态之间经历场驱动的一级相变,可能从自旋单重态转变为自旋三重态超导。为了进一步了解这些超导态和磁性的作用,我们利用中子散射探测 CeRh2As2 中的自旋涨落。我们发现动态 ðπ;πÞ 反铁磁 (AFM) 自旋关联具有各向异性的准二维关联体积。我们的数据将相应 N'eel 级的交错磁化强度的上限设置为 0.31μB,T=0.08K。密度泛函理论计算将 Ce4f 电子视为核心态,表明 AFM 波矢连接费米面的很大一部分区域。我们的研究结果表明当ℏω<1.2meV时CeRh2As2中的主要激发是磁性的,并且表明CeRh2As2中的超导性是由与近似量子临界点相关的AFM自旋波动介导的。
1明尼阿波利斯大学,明尼苏达州明尼苏达州55455,美国2约翰内斯塔省大学25128 Mainz,德国55128 3 Helmholtz-institute,GSI Helmholtzentrum fur Schwerionenforschung intericiaia for Intriciai, ,加利福尼亚州伯克利,94720-7300,美国5加利福尼亚州立大学 - 加利福尼亚州海沃德市东湾94542东湾,美国6,波士顿大学,马萨诸塞州波士顿大学02215,美国波士顿大学02215,美国7 7号电气和计算机工程系马萨诸塞州02215,美国9号物理与天文学学院,南安普敦大学,南安普敦SO117 1BJ,英国10 istituto di fotonica e nanotecnologiei ifn - CNR,CNR,CNR,38123 POVO,38123 POVO,TRENTO,TRENTO,TRENTO,ITALY 11 FONDALYE BRUNOO KESSLO(ITAZIONE BROUNO)123 3812222381238128812881288112388112881128811 pEROSE&3812888812。 A*Star量子创新中心(Q.INC),材料研究与工程研究所(IMRE),
D. F. Liu 1,2 *†,Y。F. Xu 3 *†,H。Y. Hu 4 *,J。Y. Liu 5,6 *,T。P. Ying 7 *,Y。Y.
1 MOE的关键实验室,用于凝结物质的非平衡合成和调节,Shaanxi省级高级材料和介质物理学的主要实验室,XI'AN JIAOTONG大学,XI'AN,XI'AN,710049,710049,中国2个国家主要的实验室,是纳尼型纳米型材料和量化量的纳米级材料和量子量的国家主要实验室, 200433,中国3个州制造系统工程钥匙实验室,西安·贾东大学,西安,710049,中国4号材料材料纳米结构研究中心,国家材料科学研究所,1-1-1-1-1-1-1-1-1-1-1-1-15-0044,日本305-0044,日本5日本6东南大学物理学院量子材料和设备的主要实验室,211189,中国南京7 Zhangjiang Fudan International Innovation Center,Fudan University,上海2011年
由残留的恶性细胞和癌症干细胞引起的肿瘤。 [2]此外,由于手术清除肿瘤,可能会丢失大量健康组织。 癌症治疗的成功可以通过消除恶性细胞的能力,同时最大程度地减少对健康组织的损害和维持功能的能力来衡量。 此外,健康组织的再生取决于处理后干细胞的存活。 因此,需要互补的临床策略来消除恶性细胞的抵抗力,同时使患者福祉和生活质量成为可能。 高温(HT)是一种通过热量诱导癌细胞死亡的方法,它使用非电离辐射或对流方法在人体靶向区域中升高温度(至≈40–45°C),而磁性超细热(MHT)则使用局部纤维素颗粒型磁性磁性磁性磁性磁性磁性的磁性高温(MHT)。 [7–9] MHT已与放疗和化学疗法相结合,作为药物递送的策略。 [10] MHT的主要好处涉及其治疗特定癌症的能力,同时避免了危险的全身效应。 [11]此外,MHT在最低侵入性(即,在肿瘤内或通过静脉内递送),与放射疗法或化学疗法相比,具有轻度的副作用[10],并且显示出具有许多癌症治疗的协同作用,例如,癌症治疗,例如,甲基疗法,[12]药物治疗,[12]药物治疗[14] [13] [13] [13] [13]。 [15]。[2]此外,由于手术清除肿瘤,可能会丢失大量健康组织。癌症治疗的成功可以通过消除恶性细胞的能力,同时最大程度地减少对健康组织的损害和维持功能的能力来衡量。此外,健康组织的再生取决于处理后干细胞的存活。因此,需要互补的临床策略来消除恶性细胞的抵抗力,同时使患者福祉和生活质量成为可能。高温(HT)是一种通过热量诱导癌细胞死亡的方法,它使用非电离辐射或对流方法在人体靶向区域中升高温度(至≈40–45°C),而磁性超细热(MHT)则使用局部纤维素颗粒型磁性磁性磁性磁性磁性磁性的磁性高温(MHT)。[7–9] MHT已与放疗和化学疗法相结合,作为药物递送的策略。[10] MHT的主要好处涉及其治疗特定癌症的能力,同时避免了危险的全身效应。[11]此外,MHT在最低侵入性(即,在肿瘤内或通过静脉内递送),与放射疗法或化学疗法相比,具有轻度的副作用[10],并且显示出具有许多癌症治疗的协同作用,例如,癌症治疗,例如,甲基疗法,[12]药物治疗,[12]药物治疗[14] [13] [13] [13] [13]。[15]
最近,在理论上提出并实现了电子状态的自旋分裂(SS)的非常规的抗铁磁铁,其中包含指向不同方向的矩矩的磁性sublattics通过一组新型的符号来连接。这样的SS是实质性的,依赖性的,并且与自旋 - 轨道耦合(SOC)强度无关,使这些磁铁有望用于抗磁性旋转旋转。在此结合了角度分辨光发射光谱(ARPE)和密度功能理论(DFT)计算,这是一项对CRSB的系统研究,是一种金属旋转式抗速率抗fiferromagnet候选,具有Néel温度T n = 703 K。数据揭示了沿平面外和平面动量方向的CRSB的电子结构,从而使各向异性K依赖性SS与计算结果非常吻合。在非对称动量点下,此类SS的大小至少达到至少0.8 eV,这显着高于最大的已知SOC诱导的SS。这种化合物扩大了抗磁性旋转型材料的材料的选择,并且很可能会刺激随后对在室温下起作用的高效率旋转器件的研究。
磁性材料中的自旋波具有超低能量耗散和长相干长度,是未来计算技术的有前途的信息载体。反铁磁体是强有力的候选材料,部分原因是它们对外部场和较大群速度的稳定性。多铁性反铁磁体,例如 BiFeO 3 (BFO),具有源于磁电耦合的额外自由度,允许通过电场控制磁结构,从而控制自旋波。不幸的是,由于磁结构的复杂性,BFO 中的自旋波传播尚不明确。在这项工作中,在外延工程、电可调的 1D 磁振子晶体中探索了长距离自旋传输。在平行于和垂直于 1D 晶体轴的自旋传输中发现了显著的各向异性。多尺度理论和模拟表明,这种优先磁振子传导是由其色散中的群体不平衡以及各向异性结构散射共同产生的。这项工作为反铁磁体中的电可重构磁子晶体提供了途径。