由外部磁场造成的软机器因其与生物体和复杂环境相互作用的潜力而引起了显着关注。但是,它们的适应性和功能通常受到操作过程中刚性磁化的限制。在这项工作中,我们在操作过程中引入了动态可重编程的磁性软计算机,并通过各种磁场的协同作用在操作过程中进行原位重新确定的磁化功率。可振荡的谐振电路集成到机体中,从而通过不同频率的高频频率实现了对特定区域的可寻址和可感知的加热。机身由由低熔点合金和NDFEB微粒制成的微型头。加热时,合金液体会固定,允许在40吨脉冲编程场下旋转NDFEB微粒。冷却后,新的配置被锁定在适当的位置。此重编程过程对于单个或多台机器同样有效,从而实现了多种机器的多种模式变形和多个机器的合作。此外,通过结合可寻址的热致动,我们将示意多个机器人的原位组装。这项工作可能使具有增强功能的磁性软计算机可以实现。
[1] D. Aoki,A。Huxley,E。Desolution,D。Braithwaite,J。Flouquet,J。P. Brison,Eve,C。Paulsen,Nature 2001,413。[2] F. S. Bergeret, A. F. Volcov, K. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B.模式。物理。2005,77。[3] A. I. Buzdin,修订版。模式。物理。2005,77。[4] M. Eschrig,T。Löfwander,Nat。物理。2008,4,138。 [5]圣约翰,L。Xie,J。J。Wang A. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。2008,4,138。[5]圣约翰,L。Xie,J。J。WangA. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。A. Bernevig,A。Yazdani,Science 2017,358。[6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。R. [7] R. Cai,Ye,P.LV,Y。公社。2021,12。
Auto-Mag® DNA 片段分选纯化回收试剂(磁珠法)是一款基于顺磁珠技术开发的高性能试剂,专为满足 下一代测序 (NGS) 文库构建中的 PCR 产物、DNA 片段和 RNA 的纯化需求而设计,同时支持 DNA 片段的大 小分选与高效回收。在 PCR 产物纯化方面,该试剂提供了单管和 96/384 孔板两种灵活格式,通过优化的缓 冲液选择性地结合 >100 bp 的 PCR 扩增产物,利用简便的清洗步骤去除多余引物、核苷酸、盐和酶,最终 使用低盐洗脱缓冲液或水进行温和高效的洗脱。在 DNA 片段大小分选中,用户可通过调整试剂与 DNA 样 本的体积比,精准选择目标 DNA 片段范围,并通过结合、洗涤和洗脱的简单操作回收分布均匀、符合实验 需求的目标 DNA 片段。
非共线反铁磁体 (AFM) 是一个令人兴奋的新平台,可用于研究本征自旋霍尔效应 (SHE),这种现象源于材料的能带结构、贝里相位曲率和对外部电场的线性响应。与传统的 SHE 材料相比,非共线反铁磁体的对称性分析不禁止具有 ̂ x、̂ z 极化的非零纵向和平面外自旋电流,并预测电流方向为磁晶格的各向异性。本文报道了在非共线状态下唯一生成的 L1 2 有序反铁磁 PtMn 3 薄膜中的多组分平面外自旋霍尔电导率 𝝈 x xz 、𝝈 y xz 、𝝈 z xz。最大自旋扭矩效率 (𝝃 = JS / J e ≈ 0.3) 明显高于 Pt (𝝃 ≈ 0.1)。此外,非共线状态下的自旋霍尔电导率表现出预测的取向相关各向异性,为具有可选自旋极化的新设备开辟了可能性。这项工作展示了通过磁晶格进行对称性控制作为磁电子系统中定制功能的途径。
1 Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA 2 Physics Department, University of California, Berkeley, California 94720, USA 3 School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA 4 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA 5 Quantum Design, Inc.,San Diego,CA 92121,美国6应用物理系,耶鲁大学,纽黑文,康涅狄格州,06511,美国7 NSF纳米级科学与工程中心(NSEC),3112 Etcheverry Hall,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利分校,加利福尼亚州94720,美国947年77,美国947,伯克利贝克利氏caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley,美国纽约市康奈尔大学康奈尔大学纳米级科学的卡夫利研究所(Nanscale Science)14853,美国(日期:2022年5月26日)
铁磁轴子晕镜利用轴子与电子自旋的相互作用来寻找以轴子形式存在的暗物质。它由一个轴子-电磁场传感器和一个灵敏的射频探测器组成。前者是一个光子-磁振子混合系统,后者基于量子限制约瑟夫森参量放大器。混合系统由十个直径为 2.1 毫米的钇铁石榴石球组成,通过静态磁场耦合到单个微波腔模式。我们的装置是迄今为止最灵敏的射频自旋磁强计。最小可检测场为 5 . 5 × 10 − 19 T,积分时间为 9 小时,对应于轴子-电子耦合常数 g aee ≤ 1 的极限。 7 × 10 − 11 @ 95% CL 我们研制的晕镜的科学运行得到了暗物质轴子对电子耦合常数的最佳极限,频率跨度约为120 MHz,对应轴子质量范围为42 . 4 – 43 . 1 μ eV。这也是第一台仅通过改变静磁场就能进行宽轴子质量扫描的仪器。
我们研究了铁磁异常的约瑟夫森连接的开关电流分布,该连接构成线性增加的偏置电流。我们的研究发现了开关电流分布的位置与关键系统参数之间的显着相关性,例如自旋 - 轨道耦合的强度和吉尔伯特阻尼参数。这表明可以通过实验测量直接确定这些参数。通过对噪声,磁化,相动态和开关电流分布的统计特性之间的相互作用进行全面分析,我们加深了对这些有趣的低温旋转型旋转设备的理解。这些发现有可能在量子计算体系结构和信息处理技术领域的应用中进行应用。
在图案化的周期性周期性纳米线上大大增强了Faraday旋转,在二晶型铁石榴石膜上[10]。大多数表面等离子体的研究都集中在金属等贵金属上。但是,这些金属必须与光学活性材料结合使用,以提供血浆的主动控制。特别是,可以用应用于磁性金属杂种系统的磁场来控制磁质量[11,12]。磁光kerr效应(moke)将线性极性光转换为Mo材料中的椭圆极化光。最近,Moke已用于检测磁性纤维中的SOC相关扭矩,例如通过电子旋转角动量和光线之间的相互作用,例如绝缘Yttrium-Iron Garnet(YIG)和金属COFEB以及重金属PT异质结构[13,14]。YIG中的摩克很小,对于近红外波长。用二晶体或稀土元素代替Yttrium可以增强摩克,而磁矩只有很小的变化[15-18]。双掺杂的YIG中的大Mo效应是由原子内轨道偶极子偶极转变在CE的4F和5D状态之间或Inter- inter-
实验和理论结果均表明,由于磁矩非常小,平行态和垂直态之间的微小能量差可以体现为反铁磁层间耦合的相当大的层间耦合场,与铁磁层间耦合相比具有独特的优势。结合温度和间隔层厚度相关的 SMR 测量、XMLD 表征和理论模型,证明了反铁磁结中的正交层间耦合。
传统上,二维中的磁性被认为是由旋转闪光介导的外来相,但远非距离基态下序。最近,在分层的范德华化合物中发现了2D磁态。通过材料组成,结合降低性的稳健和可调磁态,预见到磁性设备中的关键元素具有强大的潜力。在这里,提出了基于金属氯化物的2D磁铁。磁性顺序在金属基板的顶部,甚至直至单层极限,并且可以通过将金属离子从铁到镍替换为底面。使用功能化的STM尖端作为磁传感器,即使没有外部磁场,也可以识别局部交换场。由于这些化合物是通过分子束外延技术处理的,因此它们为当前设备技术提供了巨大的潜力。