受控的具有最高频率和最短波长的相干旋转波是旋转和镁质的基石。在这里,使用Heisenberg Antiferromagnet RBMNF 3,我们证明激光诱导的Thz旋转动力学对应于对应于相互一致的反向传播波的成对,波向量到Brillouin区域的边缘,无法用磁性和抗模型(antiferromagnotic)旋转(nneellomagnetial)dictive(nneellomagnetial)。相反,我们建议使用自旋相关函数对这种自旋动力学进行建模。我们得出了后者的量子力学运动方程,并强调与磁化和抗磁磁性不同不同,抗铁磁体中的自旋相关性不表现出惯性。
1 卡尔斯鲁厄理工学院 (KIT) 物理研究所,德国卡尔斯鲁厄 2 卡尔斯鲁厄量子材料与技术研究所,德国卡尔斯鲁厄 3 韩国首尔基础科学研究所 (IBS) 量子纳米科学中心。 4 梨花女子大学,韩国首尔。 * 通讯作者:philip.willke@kit.edu,
在某些频率下,通过抗磁性有序的磁晶体传播的光传播可以表现出与双曲线极性子相关的各种现象。由于强烈的各向异性而出现了有趣且可能有用的现象,这是由镁质 - 波利顿共鸣驱动的强烈各向异性的,包括负折射和聚焦在扁平镜头中。在双曲介质中,这种不寻常的光学器件通常在各向异性垂直或与介质的界面平行时表现出来。然而,各向异性方向可以是控制波传播的关键药物。在这里,我们探讨了如何使用这种材料特性来大幅度修改光学现象。更具体地说,我们发现,通过将光轴的方向倾斜相对于抗铁磁晶体的表面,可以获得不对称的波传播,进而可以用来将其用于横向调节由双胞胎介质制成的平面镜头的焦点。
1明尼阿波利斯大学,明尼苏达州明尼苏达州55455,美国2约翰内斯塔省大学25128 Mainz,德国55128 3 Helmholtz-institute,GSI Helmholtzentrum fur Schwerionenforschung intericiaia for Intriciai, ,加利福尼亚州伯克利,94720-7300,美国5加利福尼亚州立大学 - 加利福尼亚州海沃德市东湾94542东湾,美国6,波士顿大学,马萨诸塞州波士顿大学02215,美国波士顿大学02215,美国7 7号电气和计算机工程系马萨诸塞州02215,美国9号物理与天文学学院,南安普敦大学,南安普敦SO117 1BJ,英国10 istituto di fotonica e nanotecnologiei ifn - CNR,CNR,CNR,38123 POVO,38123 POVO,TRENTO,TRENTO,TRENTO,ITALY 11 FONDALYE BRUNOO KESSLO(ITAZIONE BROUNO)123 3812222381238128812881288112388112881128811 pEROSE&3812888812。 A*Star量子创新中心(Q.INC),材料研究与工程研究所(IMRE),
磁性材料中的自旋波具有超低能量耗散和长相干长度,是未来计算技术的有前途的信息载体。反铁磁体是强有力的候选材料,部分原因是它们对外部场和较大群速度的稳定性。多铁性反铁磁体,例如 BiFeO 3 (BFO),具有源于磁电耦合的额外自由度,允许通过电场控制磁结构,从而控制自旋波。不幸的是,由于磁结构的复杂性,BFO 中的自旋波传播尚不明确。在这项工作中,在外延工程、电可调的 1D 磁振子晶体中探索了长距离自旋传输。在平行于和垂直于 1D 晶体轴的自旋传输中发现了显著的各向异性。多尺度理论和模拟表明,这种优先磁振子传导是由其色散中的群体不平衡以及各向异性结构散射共同产生的。这项工作为反铁磁体中的电可重构磁子晶体提供了途径。
鉴于拓扑自旋纹理在信息存储技术中的潜在应用,其生成和控制是现代自旋电子学最令人兴奋的挑战之一。特别令人感兴趣的是磁绝缘体,由于其低阻尼、无焦耳加热和减少的耗散,可以提供节能的自旋纹理平台。本文证明了样品厚度、外部磁场和光激发之间的相互作用可以产生大量的自旋纹理,以及它们在绝缘 CrBr 3 范德华 (vdW) 铁磁体中的共存。使用高分辨率磁力显微镜和大规模微磁模拟方法,证明了 T-B 相图中存在一个大区域,其中存在不同的条纹畴、skyrmion 晶体和磁畴,并且可以通过相位切换机制进行内在选择或相互转换。洛伦兹透射电子显微镜揭示了磁性纹理的混合手性,在给定条件下属于布洛赫类型,但可以通过厚度工程进一步操纵为尼尔类型或混合类型。可以通过标准光致发光光学探针进一步检查不同磁性物体之间的拓扑相变,该探针通过圆偏振分辨,表明存在激子-skyrmion耦合机制。研究结果表明,vdW磁绝缘体是一种有前途的材料框架,可用于操纵和生成与原子级设备集成相关的高度有序的skyrmion晶格。
将输出变压器集成到功率转换电子设备中 利用 WBG 半导体的高开关速度、电压和温度性能 高频变压器的核心材料一直是事后才考虑的事情(目前没有一种材料可以满足所有需求) 材料要求: 在 10-200 kHz 频率范围内损耗低
检测磁振子及其量子特性,尤其是在反铁磁 (AFM) 材料中,是实现纳米磁性研究和节能量子技术发展中许多雄心勃勃的进步的重要一步。最近基于超导电路的混合系统的发展为设计利用不同自由度的量子传感器提供了可能性。在这里,我们研究了基于二分 AFM 材料的磁振子-光子-传输子杂化,这导致了二分 AFM 中传输子量子比特和磁振子之间的有效耦合。我们展示了如何通过超导传输子量子比特的 Rabi 频率来表征磁振子模式、它们的手性和量子特性,例如二分 AFM 中的非局域性和双模磁振子纠缠。
少原子层薄材料 [1–3] 的合成引发了大规模研究的火花,旨在操控其宏观特性。最近,二维磁有序材料也已生成。[4–7] 这些化合物的长程磁序似乎极易受到晶格畸变的影响,这是因为磁各向异性在稳定二维磁体中的长程有序方面发挥了作用。[8] 通过各种机制超快产生声子已被证明是在基本时间尺度上驱动和控制块体磁体自旋动力学的有力工具。[9–14] 这种途径也适用于范德华二维材料晶体,最近在铁磁 CrI 3 晶体中发现动态自旋晶格耦合就证明了这一点。 [15] 从自旋电子学角度来看,二维反铁磁体与铁磁体相比具有几个基本优势。主要优势在于基态更稳定,磁共振频率在 THz 范围内,比铁磁体高几个数量级。至关重要的是,反铁磁磁子与声子的耦合处于光学声子的能量范围内,这导致了最近有关二维反铁磁材料中杂化磁子-声子准粒子的报道。[16–20] 因此,光驱动的集体晶格模式具有在二维反铁磁体中光学控制长程磁序的潜力,这是基于已证实的可能性,即使光子能量远离其本征频率,也可以完全相干地驱动此类模式[21,22],也基于它们与磁子的强耦合。在此背景下,过渡金属三硫属磷酸盐(MPX3,其中M = Ni、Fe、Mn、... 和X = S、Se)代表了一类有趣的范德华反铁磁体。[23–26] 虽然据报道在独立的 NiPS3 块体单晶中 [27] 可以产生光学磁振子,但这种材料缺乏可扩展性到二维极限。事实上,实验证明,NiPS3 的单原子层在磁排序上与 MnPS3 [28] 和 FePS3 [25] 并无不同。
具有非共线自旋结构的反铁磁体表现出各种特性,使其对自旋电子器件具有吸引力。其中一些最有趣的例子是尽管磁化可以忽略不计,但仍然表现出异常霍尔效应,以及具有不寻常自旋极化方向的自旋霍尔效应。然而,只有当样品主要处于单个反铁磁畴状态时,才能观察到这些效应。这只有当补偿自旋结构受到扰动并由于自旋倾斜而显示出弱矩时才能实现,从而允许外部畴控制。在立方非共线反铁磁体的薄膜中,这种不平衡以前被认为需要由基板应变引起的四方畸变。本文表明,在 Mn 3 SnN 和 Mn 3 GaN 中,自旋倾斜是由于磁性锰原子远离高对称位置的大量位移导致结构对称性降低。当仅探测晶格度量时,这些位移在 X 射线衍射中仍然隐藏,需要测量大量散射矢量才能解析局部原子位置。在 Mn 3 SnN 中,诱导净矩使得能够观察到具有不同寻常温度依赖性的异常霍尔效应,据推测这是由于 kagome 平面内类似块体的温度依赖性相干自旋旋转所致。