磁耦合材料的应用为磁性的探索以及二维极限下的自旋电子学应用提供了新的机遇。[7–9] 在所有基于范德华层状体系的界面工程异质结构中,磁邻近效应对于操控自旋电子学、[10–12] 超导[13–15] 和拓扑现象至关重要。[16–18] 磁性 skyrmion 因其非平凡拓扑结构而得到深入研究,这导致了许多有趣的基本和动力学特性。[19–21] 这些主要见于非中心对称单晶[22–24] 超薄外延系统[25,26] 和磁性多层膜。 [27–31] 最近,在与氧化层 [32] 或过渡金属二硫化物 [33] 界面的范德华铁磁体中观察到了 Néel 型 skyrmion,通过调整铁磁体厚度可以控制 skyrmion 相。此外,使用各种范德华磁体,可以在其新界面中创建具有独特性质的 skrymion 相。承载多个 skyrmion 相的材料增加了该领域的丰富性,并且在设计方面具有额外的自由度
导电金属通常会传输或吸收自旋电流。本文报告了将两层金属薄膜连接在一起可以抑制自旋传输和吸收的证据。我们研究了铁磁体/间隔层/铁磁体异质结构中的自旋泵浦,其中间隔层(由金属 Cu 和 Cr 薄膜组成)将铁磁自旋源层和自旋吸收层分隔开。Cu/Cr 间隔层在很大程度上抑制了自旋泵浦,即既不传输也不吸收大量自旋电流,尽管 Cu 或 Cr 单独传输了相当大的自旋电流。Cr 的反铁磁性对于抑制自旋泵浦并不是必不可少的,因为我们观察到 Cu/V 间隔层也有类似的抑制作用,其中 V 是 Cr 的非磁性类似物。我们推测,自旋透明金属的多种组合可能形成抑制自旋泵浦的界面,尽管其潜在机制仍不清楚。我们的工作可能会激发人们对理解和设计金属多层中的自旋传输的新视角。
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
非共线反铁磁体 (AFM) 是一个令人兴奋的新平台,可用于研究本征自旋霍尔效应 (SHE),这种现象源于材料的能带结构、贝里相位曲率和对外部电场的线性响应。与传统的 SHE 材料相比,非共线反铁磁体的对称性分析不禁止具有 ̂ x、̂ z 极化的非零纵向和平面外自旋电流,并预测电流方向为磁晶格的各向异性。本文报道了在非共线状态下唯一生成的 L1 2 有序反铁磁 PtMn 3 薄膜中的多组分平面外自旋霍尔电导率 𝝈 x xz 、𝝈 y xz 、𝝈 z xz。最大自旋扭矩效率 (𝝃 = JS / J e ≈ 0.3) 明显高于 Pt (𝝃 ≈ 0.1)。此外,非共线状态下的自旋霍尔电导率表现出预测的取向相关各向异性,为具有可选自旋极化的新设备开辟了可能性。这项工作展示了通过磁晶格进行对称性控制作为磁电子系统中定制功能的途径。
随着体积自旋转移矩 (STT) [11,12] 和自旋轨道矩 (SOT) [13–16] 机制的进步,电流诱导畴壁 (DW) 运动 (CIDWM) 已从平面磁性 [8] 演变为合成反铁磁 (SAF) [9,10] 赛道。在铁磁体/重金属 (HM) 界面处存在破缺的反演对称性时,自旋轨道耦合产生手性自旋矩,[17] 驱动 Néel 畴壁运动,具有强垂直磁各向异性 (PMA) 的薄膜,由铁磁体/HM 界面处的 Dzyaloshinskii-Moriya 相互作用 (DMI) 稳定,[18] 可以沿电流方向以高速移动 [12,15,19],既可以沿直线赛道,也可以沿曲线赛道移动。 [20] 据报道,SAF 赛道中存在一种更高效的 DW 运动,该赛道由两个垂直磁化的铁磁子赛道组成,它们通过超薄钌层反铁磁耦合。[10] SAF 结构中的巨大交换耦合扭矩 (ECT) 提供了一种额外的主导驱动机制,允许将 DW 传播速度提高到 ≈ 1000 ms − 1 以上。[10,21] 稀土-过渡金属合金中的 ECT 在亚铁磁合金的角动量补偿温度下进一步最大化。[22,23] 最近,在某些磁绝缘体中也发现了高效的 CIDWM。[24]
由于石墨烯中的近似自旋谷对称性,在电荷中立时石墨烯中的元素的基态是特定的su(4)量子 - 量子 - 量子 - 尺寸 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子量。如果仅考虑库仑相互作用,则该铁磁铁可以提高自由度的自由度或等效到山谷伪旋转自由度。因此,选择的自由会受到明确打破SU(4)对称性的转基准能量尺度的限制,最简单的对称性是由zeeman效应给出的,该效应表达了磁场方向的旋转。此外,还可能由短距离相互作用或电子音波耦合引起谷对称性破坏术语。在这里,我们建立在相图上,该相图已由Kharitonov [Phys。修订版b 85,155439(2012)],以识别与这些类型的量子霍尔铁磁体兼容的不同天空。与铁磁体类似,电荷中立性的天空被中心的GR(2,4)Grassmannian描述,这使我们能够构造Skyrmion Spinors。然后,通过将其在变异方法中最小化的能量最小化,就其剩余的自由参数而言,这些不同的自由参数必须与距其中心较大距离的距离必须与屈光度的背景相兼容。我们表明,不同的天际象征类型在局部,sublattice分辨的,自旋磁化强度中具有明显的特征,在扫描键盘显微镜和光谱上原则上可以访问。
landau-lifshitz-gilbert(LLG)方程,用于对铁磁体中的磁动力学进行建模,默认假设与自旋进液相关的角动量可以立即放松,而当真实或有效的磁场导致进液的实际或有效的磁场时,则可以关闭。对“自旋惯性”的这种忽视是非物理的,会违反节能。最近,修改了LLG方程以说明惯性效应。然而,共识似乎是,在慢速磁力动力学中,这种效果随着时间的流逝而言是不重要的,比角动量的放松时间更长,这通常在铁磁体中很少fs至〜100 ps。在这里,我们表明,即使在缓慢的磁动力学中,自旋惯性也至少有一个非常严重且可观察到的作用。它涉及与用外部试剂(例如磁场)翻转纳米级铁磁铁磁化相关的开关误差概率。当场强接近开关的阈值时,开关可能需要〜ns,这比角动量放松时间长得多,但是在开关误差概率中感觉到了自旋惯性的效果。这是因为开关轨迹的最终命运,即无论是导致成功还是失败,当由于旋转惯性造成的坚果动力学时,在开关动作的前几个PS中发生的事情会影响。自旋惯性增加了误差概率,这使开关更容易出错。这具有至关重要的技术意义,因为它与磁逻辑和记忆的可靠性有关。
自旋向列相是经典液晶的磁性类似物,是同时具有液体和固体特性的第四种物质状态 1,2 。特别有趣的是价键自旋向列相 3-5 ,其中自旋量子纠缠形成多极序而不会破坏时间反演对称性,但其明确的实验实现仍然难以实现。在这里,我们在方晶格铱酸盐 Sr 2 IrO 4 中建立了自旋向列相,其在强自旋轨道耦合极限下近似实现伪自旋二分之一海森堡反铁磁体 6-9 。冷却后,在 TC ≈ 263 K 时转变为自旋向列相,其特点是从拉曼光谱中提取的静态自旋四极子磁化率发生发散,并伴随与旋转对称性自发破缺相关的集体模式的出现。四极序在 TN ≈ 230 K 以下的反铁磁相中持续存在,并通过共振 X 射线衍射与反铁磁序的干涉而直接观察到,这使我们能够唯一地确定其空间结构。此外,我们发现利用共振非弹性 X 射线散射在短波长尺度上完全破坏了相干磁振子激发,这表明反铁磁态中存在多体量子纠缠 10,11 。总之,我们的结果揭示了 Néel 反铁磁体背后的量子序,人们普遍认为它与高温超导机制密切相关 12,13 。
视频:磁性是巨大的基本和技术重要性领域。在原子水平上,磁性起源于电子“自旋”。纳米融合(或基于纳米级的自旋电子学)的领域旨在控制纳米级系统中的旋转,这在过去几十年中导致了数据存储和磁场传感技术的天文学改善,并获得了2007年诺贝尔物理学奖的认可。纳米级固态器件中的旋转也可以充当新兴量子技术的量子位或量子位,例如量子计算和量子传感。由于磁性与旋转之间的基本联系,铁磁体在许多固态自旋装置中起着关键作用。这是因为在费米水平上,状态的电子密度是自旋偏振的,这允许铁磁体充当自旋的电气喷射器和检测器。铁磁体在费米水平的低自旋极化,流浪磁场,串扰和纳米级的热不稳定性方面存在局限性。因此,需要新的物理学和新材料,以将自旋和量子设备技术推向真正的原子极限。出现的新现象,例如手性诱导的自旋选择性或CISS,其中观察到载体自旋与中性的有趣相关性,因此可以在纳米杂交中发挥作用。这种效果可以允许分子尺度,手性控制自旋注射和检测,而无需任何铁磁铁,从而为装置旋转的基本方向打开了一个新的方向。■密钥参考CISS在此重点的账户中发现了在手性分离,识别,检测和不对称催化等不同领域的无数应用,但由于其对未来旋转基因技术的巨大潜力,我们专门回顾了这种影响的旋转器械结果。第一代基于CISS的自旋装置主要使用手性生物有机分子。但是,也已经确定了这些材料的许多实际局限性。因此,我们的讨论围绕着手性复合材料的家族,由于它们能够在单个平台上吸收各种理想的材料特性,因此可以成为CISS的理想平台。在过去的几十年中,有机化学界对这类材料进行了广泛的研究,我们讨论了已确定的各种手性转移机制,这些机制在CISS中起着核心作用。接下来,我们将讨论对其中一些手性复合材料进行的CISS设备研究。重点是给手性有机碳同素同素复合材料的家族,在过去的几年中,该帐户的作者对此进行了广泛的研究。有趣的是,由于存在多种材料,杂交手性系统的CISS信号有时与纯手性系统中观察到的信号不同。鉴于手性复合材料的巨大多样性,到目前为止,CISS设备研究仅限于几种品种,预计该帐户将增加对手性复合材料家族的关注,并激励对其CISS应用的进一步研究。
多体量子系统的非平衡物理蕴含着各种非常规现象。在本文中,我们通过实验研究了这些现象中最令人费解的现象之一——量子姆潘巴效应,即倾斜的铁磁体在远离对称状态时比靠近对称状态时恢复对称性的速度更快。我们首次在捕获离子量子模拟器中展示了这种效应的发生。通过纠缠不对称监测对称性破坏和恢复,通过随机测量进行探测,并使用经典阴影技术进行后处理。通过测量实验状态和静态热对称理论状态之间的 Frobenius 距离,我们的发现得到了进一步证实,为子系统热化提供了直接证据。