模块 II(10 小时) 介电特性:简介、介电常数、介电极化(极化率)、介电体中的不同类型极化(电子、离子、取向和空间电荷极化、内部场(无推导)、克劳修斯-莫索蒂方程、介电损耗、击穿和强度、介电材料的应用 磁性:简介、基本定义、玻尔磁子、磁性材料的分类- 铁磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性,磁滞曲线- 软磁和硬磁材料,磁性材料的应用 超导性:一般特性、迈森效应、同位素效应、超导体中的能隙、相干长度、临界磁场、磁通量化穿透深度、直流和交流约瑟夫森效应 I 型和 II 型超导体、BCS 理论、伦敦方程、超导体的应用
根据获得的铁磁性和累积微损伤的程度,通过无损检测方法测量磁特性和矫顽力,评估奥氏体不锈钢设备的疲劳状态,R. Solomakha,特殊科学工程,哈尔科夫,乌克兰
抗铁磁性海森堡模型:大致相邻的量子颗粒的目的是朝相反的方向排列。例如,这种哈密顿量是作为所谓的莫特绝缘子的有效哈密顿人。[图像:Sachdev,Arxiv:1203.4565]
近年来,研究人员越来越多地探索二维 (2D) 电子级材料,以将其用于半导体器件。二维材料由单层、原子厚的晶体结构组成,具有独特的性质。它们不再遵循块体材料的自然物理定律,而是受量子定律支配。它们表现出广泛有用的电气、机械和光学特性,具有革命性的巨大潜力,可以彻底改变下一代电子设备:提供纳米级集成、超高速运行和低功耗。几十年来,人们一直认为二维材料不表现出铁磁性。然而,在 2017 年,科学家发现两种二维材料——碘化铬和 CGT (Cr 2 Ge 2 Te 6 )——本质上是铁磁性的。他们的研究为探索各种磁性材料(如铁磁性、半磁性和顺磁性)开辟了新的可能性。所有这些材料都有可能用作电子级材料。从那时起,几种二维材料被理论化并归入这一类别。
•经典的diamagnetism理论•兰格文经典的磁磁性理论•comagnetism的量子理论,居里法律•铁磁域介绍•铁磁性理论•B-H曲线和连续性理论•能量损失和应用>
摘要 - 已经回顾了抗铁磁纳米结构中木元的激发,检测和传播的理论和实验研究。抗铁磁材料的特性,例如不存在宏观磁化,存在强交换相互作用以及复杂的磁晶体结构,使实施新型的内存和功能电子设备使得有可能。微观和纳米级的抗铁磁材料中可能的镁效应的研究需要新的实验和理论方法。在这篇综述中,描述并系统化了磁振荡激发的最新结果 - 磁磁性的抗铁磁材料。提出了抗铁磁铁和多层抗磁性异质结构的主要理论结果。模型用于描述包括纳米层结构中电流和光脉冲引起的现象,包括抗铁磁体。通过布里鲁因散射研究抗铁磁微体和纳米结构的方法,以及抗铁磁性纺纱型和镁质的应用的前景。
量子异常霍尔效应(QAHE)已在磁掺杂的拓扑绝缘子中进行了实验观察到。然而,主要归因于吸毒者磁掺杂的超高温度(通常低于300 mk),成为潜在应用的艰巨挑战。在这里,提出了一种非磁性策略来产生铁磁性并在拓扑绝缘子中实现Qahe。我们从数值上证明,在BI 2 SE 3,BI 2 TE 3和SB 2 TE 3中,非磁性氮或碳取代可以诱导磁矩,而只有氮掺杂的SB 2 TE 3系统才能表现出远距离的铁磁性,并保存大型的散装带隙。我们进一步表明,其相应的薄膜可以在17-29开尔文的温度下携带Qahe,这比相似系统中典型实现的温度高两个数量级。我们提出的非磁性掺杂方案可能会阐明拓扑绝缘体中高温QAHE的实验性实现。
从理论上讲,可以通过应用D-Wave Altermagnetism,可以在二维Z 2拓扑内硫酸(即Kane-Mele模型)中诱导Chern数字可调量子异常霍尔效应(QAHE)和二阶拓扑绝缘子。当Altermagentism的N´Eel向量位于X-Y平面中时,Z 2 Ti被损坏并驱动到二阶拓扑绝缘体阶段,在Nano akes上显示了代表性的角状态。当进一步包括固有的rashba自旋轨道耦合时,二阶Ti被进一步驱动到Qahe阶段,具有各种Chern数字(例如C =±1或±3)。当n´eel向量沿z方向时,固有的rashba旋转轨道耦合对于打破镜像对称性是必要的,以使二阶Ti和Qahe的顺序出现以及增加的异端力强度的提高。我们还观察了混合手续的Qahe,即存在反传播的边缘模式,但在色带边界处存在净手性电流。我们的作品表明,Altermagnetism在探索各种各样的拓扑阶段中起着至关重要的作用,就像其铁磁性和反铁磁性一样。