001 1-4 全体演讲 1 Sung-Joon Kim 奥氏体不锈钢中间隙原子的作用:C 与 N 002 5-7 1 相变 Tadashi Furuhara 界面工程在控制钢的微观结构和性能中的应用 003 8-11 1 相变 Yasunobu Nagataki 汽车用超高强度钢板的最新研究进展 006 12-15 1 相变 Mahesh Chandra Somani 北极应用新型超高强度钢的设计和加工的最新进展 007 16-18 1 晶粒结构控制 Munekazu Ohno 包晶钢凝固过程中粗柱状奥氏体晶粒的形成 008 19-20 1 晶粒结构控制 Shuang Xia 晶界特征分布对 316L 不锈钢力学性能的影响 009 21-22 1 晶粒结构控制Toshio Ogawa 通过三维微观结构分析表征纯铁和低碳钢的再结晶行为 010 23-25 1 晶粒结构控制 YongJie Yang 取向硅钢中一次再结晶织构的发展 011 26-29 1 第二相粒子控制 Yutaka Neishi 通过控制夹杂物形态提高特殊钢棒材和线材的性能 012 30-33 1 第二相粒子控制 Ling Zhang 含 2 wt%Nb 低碳钢的力学性能 013 34-37 1 第二相粒子控制 Wei Wang 通过测量高温下晶粒生长获得 TiN 在奥氏体中的溶度积 015 38-40 2 强度和变形 1 Nobuhiro Tsuji 完全再结晶超细晶粒钢同时实现高强度和高延展性的可能性 016 41-43 2 强度与变形 1 Elena Pereloma 揭示加工参数之间的关系,铁素体高强度低合金钢的相间析出与强化 017 44-47 2 强度与变形 1 Genichi Shigesato 高韧性钢板的微观组织控制 018 48-50 2 强度与变形 1 Norimitsu Koga 时效超低碳钢的低温拉伸性能 019 51-54 2 强度与变形 1 Myeong-heom Park 不同马氏体硬度的铁素体+马氏体双相钢的局部变形行为 020 55-57 2 强度与变形 2 Noriyuki Tsuchida 从应力分配角度改善力学性能 021 58 2 强度与变形 2 Stefanus Harjo 利用脉冲中子衍射观察钢材的变形行为 022 59 2 强度与变形 2 Si Gao 晶粒尺寸对钢材拉伸性能的影响304 不锈钢的原位中子衍射研究 023 60 2 先进钢种 1 Jungho Han 提高中锰钢低温韧性的可能性搅拌摩擦焊 024 61 2 先进钢种 1 Hongliang Yi 涂层/基体界面碳富集及其对 Al-Si 涂层压淬钢弯曲性能的影响 027 62-65 2 先进钢种 1 Dirk Ponge 高强度中高锰钢中的氢脆:从基础认识到新的抗氢微观结构设计 028 66-69 3 氢脆 Young-Kook Lee 微观结构和变形对珠光体钢氢脆的影响 029 70 3 氢脆 Hong Luo 环境引起的铁基多元合金的退化 030 71-73 3 氢脆 Shusaku Takagi 氢脆评估问题 031 74-76 3 氢脆 Akinobu Shibata 马氏体钢中的氢相关裂纹扩展行为 032 77-78 3 氢脆 Tomohiko Hojo 超高强度 TRIP 辅助钢的氢脆性能评估 033 79 3 耐热钢的设计 Satoru Kobayashi 提高长期结构稳定性的铁素体耐热钢的设计 034 80 3 设计耐热钢的设计 Shigeto Yamasaki Co 添加对高铬铁素体钢蠕变强度和磁性能的影响 035 81-84 3 耐热钢的设计 Nobuaki Sekido 利用纳米 SIMS 观察耐热铁素体钢在回火过程中硼偏析的变化 036 85-88 3 耐热钢的设计 Yoshiaki Toda 提高沉淀强化铁素体钢的蠕变强度 037 89-92 3 耐热钢的评价 Masatsugu Yaguchi 长期使用条件下 91 级钢的微观结构和蠕变强度 038 93 3 耐热钢的评价 Masatoshi Mitsuhara 晶界特征对 9Cr 铁素体耐热钢中 M23C6 碳化物生长的影响 039 94-97 3 18Cr 9Ni 3Cu Nb N钢的蠕变变形行为 040 98-101 3 耐热钢的评价 张胜德 长期使用超级304H钢锅炉管的组织与力学性能
简单总结:在本文中,我们回顾了过去十年的知识进展,得益于许多学者和研究人员的投入,这些进展已经阐明了与铁死亡及其与癌症的关系有关的许多方面。铁死亡目前被认为是一种独特的受调节细胞死亡 (RCD) 类型,其特征是铁依赖性氧化应激和致命氧化脂质的积累。重点关注最近的文献,强调了铁稳态、氧化应激和脂质代谢之间的联系,这些联系总体上调节了铁死亡细胞死亡。此外,特别关注了这种 RCD 通路可能作为肿瘤抑制机制的激活。从调控和分子角度深入了解它可以为开发治疗对常规疗法有耐药性的肿瘤的新候选药物提供重要信息。
1美国亚特兰大埃默里大学医学院Winship Cancer Institute的血液学和医学肿瘤学系,美国佐治亚州30322; nfsaba@emory.edu 2 Wallace H. Coulter生物医学工程系,佐治亚理工学院和埃默里大学,亚特兰大,佐治亚州亚特兰大,佐治亚州30322,美国3美国,西南大学药物科学和中医学院,西南大学,中国北部400715,中国; lx126001@126.com 4 Otorhinolaryngology-Head and Neck Surgery系,赫尔辛基大学和赫尔辛基大学医院的系统肿瘤学研究计划,芬兰赫尔辛基,赫尔辛基大学医院; antti.makitie@helsinki。 e likek@ump.edu.pl 6 Poznan医学科学大学药理学系,波兰Poznan 60-806; agata.czarnywojtek@ump.edu.pl 7内分泌学系,代谢和内科医学系,波兹南医学科学大学,Przybyszewskiego 49,60-355 Poznan,Poland 8,Poland 8,国际高级和颈部科学科学的协调员,35125 PADUA,ITALE,ITALE,ITALE; profalfirlito@gmail.com *通信:yong.teng@emory.edu;电话。 : +1-(404)-712-8514†这些作者对这项工作也同样贡献。1美国亚特兰大埃默里大学医学院Winship Cancer Institute的血液学和医学肿瘤学系,美国佐治亚州30322; nfsaba@emory.edu 2 Wallace H. Coulter生物医学工程系,佐治亚理工学院和埃默里大学,亚特兰大,佐治亚州亚特兰大,佐治亚州30322,美国3美国,西南大学药物科学和中医学院,西南大学,中国北部400715,中国; lx126001@126.com 4 Otorhinolaryngology-Head and Neck Surgery系,赫尔辛基大学和赫尔辛基大学医院的系统肿瘤学研究计划,芬兰赫尔辛基,赫尔辛基大学医院; antti.makitie@helsinki。 e likek@ump.edu.pl 6 Poznan医学科学大学药理学系,波兰Poznan 60-806; agata.czarnywojtek@ump.edu.pl 7内分泌学系,代谢和内科医学系,波兹南医学科学大学,Przybyszewskiego 49,60-355 Poznan,Poland 8,Poland 8,国际高级和颈部科学科学的协调员,35125 PADUA,ITALE,ITALE,ITALE; profalfirlito@gmail.com *通信:yong.teng@emory.edu;电话。: +1-(404)-712-8514†这些作者对这项工作也同样贡献。
摘要:本研究调查了使用 CO₂ 激光焊接工艺生产的 AISI 304 钢焊缝的机械和微观结构行为。重点是了解不同焊接条件对 2 毫米厚钢板的影响。焊接在三种条件下进行:无根部开口的自热焊、使用填充金属的 1 毫米根部开口焊接以及使用填充金属但没有根部开口的焊接。使用扫描电子显微镜 (SEM)、显微硬度测试、单轴疲劳测试和随后的断口检查分析了接头。微观结构分析表明,在所有条件下,自热焊缝中存在大量孔隙,并且主要形成 delta 铁素体和板条状铁素体相。在机械性能方面,自热焊缝在母材中表现出断裂,而使用填充金属的焊缝在焊缝金属附近表现出断裂。尽管平均抗疲劳性存在明显差异,但自热焊缝和使用填充金属但没有根部开口的焊缝表现出更高的失效循环次数。关键词:激光焊接,不锈钢,微观组织,力学性能,疲劳 1. 引言
© 作者 2025。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问:http://creativecommons.org/licicenses/by/4.0/ 。
图 1 命名法。两个束,即 UF 和 IFOF,用于突出显示体素(a – e)和体素内的固定单元的分类。a 和 b 中的体素是单固定单元体素和单束体素以及单束固定单元的示例。由于 UF 和 IFOF 在体素 c 中分歧,因此这是多固定单元体素和多束体素的示例,其中一个固定单元被归类为单束固定单元,另一个被归类为多束固定单元。体素 d 突出显示 IFOF 的扇形化,这导致多固定单元体素和单束体素,并且两个固定单元都是单束固定单元。最后,IFOF 和 UF 都以相同的方向穿过体素 E,因此体素 e 是一个单方向体素,但也是一个多束体素,也是一个多束固定体素。这个固定体素,以及这个体素,代表了纤维束成像的瓶颈
BioDur 316LS 不锈钢是电渣重熔 (ESR) 或真空电弧重熔 (VAR) 的低碳、高镍和钼 316 不锈钢。二次优质熔炼步骤 (ESR 或 VAR) 可提高清洁度。化学改性旨在最大限度地提高该合金的耐腐蚀性并提供无铁素体的微观结构。该合金是非磁性的,即使在严格的冷成型操作之后也是如此。
在第二部分中,开发了一种系统的四阶段方法,并将其应用于 DSS 圆柱体的 DED-LB/w。实施这种系统方法并逐步增加沉积体积和几何复杂性,是开发用于生产大尺寸金属部件的增材制造程序的成功方法。结果表明,使用 DED-LB/w 增材制造的 DSS 具有良好的机械性能和耐腐蚀性。原子探针断层扫描 (APT) 分析还表明,除了铁素体分解为富铁 (α) 和富铬 (α ʹ ) 相之外,Ni、Mn 和 Si 原子的聚集也导致了 DED-LB/w 制造的 DSS 在 475°C 下脆化。