位置:主要计算生物学家 /生物信息学家位置:英国剑桥的米尔纳治疗学院(最多50%的遥控位置)类型:clock.bio at clock.bio,我们相信衰老,虽然自然,但自然是不可避免的。作为最致命的疾病的共同风险因素,衰老的过程构成了我们重点的核心。我们的使命是使用多能干细胞的再生能力开发用于治疗年龄相关疾病的新型治疗途径。作为一家快节奏的生物技术创业公司,我们正在寻找一位主要的计算生物学家 /生物信息学家,他分享了我们对未来的愿景,在这种情况下,健康状况是我们的默认状态,并为对我们的使命产生重大影响而感到兴奋。首席计算生物学家 /生物信息学家将发挥关键作用,作为第一个内部全日制生物信息学角色,继承了现有的基础架构,并与正在进行的生物信息学承包商合作。该角色将主要集中在研究中,包括对Clock.bio产生的所有OMIC数据的动手分析,以及对外部研究数据集的上下文对其进行上下文呈上下文。除了研究外,该角色还将包括数据管理职责以及与其他位置和时区的团队的合作。鉴于clock.bio的启动性质,个人将有机会戴多个帽子并为业务的各个方面做出贡献。职责
2002 年,欧盟颁布了一项指令(欧盟指令 2002/95/EC),要求 2006 年 7 月 1 日后投放市场的新电气和电子设备及系统不得含有铅 (Pb) 或其他对环境有害的物质。铅被用作分立电气和电子元件的表面镀层,用于焊接目的(例如锡/铅焊料合金),包括集成电路、半导体、电容器、电阻器和其他电子电路,广泛应用于飞机或飞机设备上。迄今为止,没有一种无铅合金可以完全替代过去 50 多年来在电子电气行业广泛使用的锡铅 Sn-Pb 共晶合金。许多提议的替代材料的熔点高于当前的共晶锡铅,而一些低温材料将无法承受极端的航空航天操作环境。无铅焊料和涂层可能会降低系统或子系统的可靠性。以下因素可能会影响安全性和系统性能:
本出版物严格遵守奥克兰地区议会 (ARC) 的版权和出版物中的其他知识产权(如果有)。出版物的用户只能以安全的数字媒体或硬拷贝形式访问、复制和使用出版物,用于与个人、公共服务或教育目的有关的负责任的真正的非商业目的,前提是出版物必须准确复制,并在任何使用或复制时附上其来源、出版日期和作者的正确归属。未经 ARC 事先书面同意,不得以任何方式将本出版物用于任何商业目的。ARC 不提供任何保证,包括但不限于通过出版物提供的信息或数据(包括第三方数据)的可用性、准确性、完整性、时效性或可靠性,并明确声明(在法律允许的最大范围内)对因您使用或依赖出版物或通过出版物提供的信息和数据而造成的任何损害或损失不承担任何责任。出版物及其所含信息和数据均按“原样”提供。
4. 铅中毒。世界卫生组织 (2022) https://www.who.int/news- room/fact-sheets/detail/lead-poisoning-and-health#:~:text=铅中毒可能导致严重的智力障碍和行为障碍。(访问日期:7/6/23)
b ackground:儿童铅中毒仍然是美国以及世界其他地方的重要公共卫生问题。尽管原发性预防是一个主要目标,并且至关重要的是要使儿童毒死,但探索减少已经中毒的儿童中铅神经毒性影响的方法也很重要。是否将铅诱导的神经毒性及其相关的不良结果视为“永久”或“持久”可能会影响潜在的补救效果考虑改善儿童铅中毒的结果的方式。o主体:本评论的目的是讨论与铅对大脑的直接神经毒性影响有关的永久性和持久性的思想,以及这些效果的不利结果。有关铅诱导的神经毒性影响对大脑和行为的潜在缓解的最新新见解以及有关神经居住的临床信息,以提出改善铅毒物儿童认知/行为结果的潜在策略。d Iscussion:关于铅诱导的神经毒性及其由此产生的结果,永久性和持久性之间的区别可能对公共卫生政策对童年铅暴露的问题产生广泛的影响。永久性术语意味着损害是不依赖的 - 几乎没有改进的机会。但是,有证据表明,至少在适当情况下,至少某些不利的认知/行为结果是持久的,而不是永久的,并且可能在适当的情况下进行一些缓解。这本作者建议,临床,介入的研究专门致力于探索最佳的神经居住和富集条件,以刺激塑料和增强功能,以确定临床前研究铅诱导的脑损伤以及这些效果的临床前研究的有希望的程度,这些效果可以成功地翻译而成。https://doi.org/10.1289/ehp12371
太阳辐射和风提供了用于加热和冷却的时间温度。0.005la e na 0.5 ba 0.5 tio 3 -0.06batio 3 -0.002TA是最适合能量收集的材料。通过调谐工作频率,负载电容和电阻进一步提高电压和功率输出。以0.04 Hz的频率获得6.7 m W的最大功率,负载电容为1 m f,电阻为25 m u。基于电感器(p e SSHI)的平行同步开关收获的非线性电路和电感上的混合同步开关收获(H E SSHI)用于增强功率。在P E SSHI和H E SSHI下,功率分别增加了54%和34.6%。但是,由于自触发过程和低能损失,因此首选H e SSHI用于促进。这项工作显示了无铅的式式式材料的潜力,用于在电路中损失和损失。©2022越南国立大学,河内。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
可穿戴电子产品是一种新兴技术,它实现了日常电子设备的灵活性、可穿戴性和舒适性,可广泛应用于电子皮肤[1–4]、自供电传感器[5]和健康监测[6,7]等各种应用。尽管在开发多功能可穿戴设备方面已经取得了长足的进步,但电源仍然是一个难以解决的挑战。电池和超级电容器尽管具有良好的稳定性和效率,但仍然受到寿命、刚性、体积、封装和安全性等问题的限制。[8,9]作为未来自供电技术的潜在候选者,摩擦电和压电纳米发电机(TENG 和 PENG)能够从环境(风、雨和潮汐能)和人体运动(行走、跑步、拍手和弯肘)中获取机械能,并将其转化为电能为可穿戴设备供电。 [10–15] TENG通过摩擦起电和静电感应的耦合效应产生电能,而PENG则利用压电材料变形产生的偶极矩将机械能转化为电能。两者都是很有前途的能源技术,可以满足绿色能源和可持续发展的苛刻要求。然而,这两种技术也各有优缺点。例如,由于压电材料封装方便、结构灵活,PENG通常具有更好的电稳定性和操作灵活性,但其电输出相对较低。相反,TENG通常具有更高的电输出,但是它们的工作机制,例如垂直接触分离和横向滑动模式,需要两种不同材料的相对位移,这限制了设备的配置和应用场景。因此,一种混合型TENG和PENG能量收集器(TPENG)结合它们的优点,以获得更高的功率输出并适应不同的应用,是非常可取的。
摘要:随着对高功率密度电气和电子系统的需求不断增长,促进了具有高能量密度、高电容密度、高电压和频率、低重量、高温可操作性和环境友好性等特性的储能电容器的发展。与电解电容器和薄膜电容器相比,储能多层陶瓷电容器 (MLCC) 具有极低的等效串联电阻和等效串联电感、高电流处理能力和高温稳定性等特点。这些特性对于电动汽车、5G 基站、清洁能源发电和智能电网中的快速开关第三代宽带隙半导体等应用非常重要。目前已有大量关于最先进的 MLCC 储能解决方案的报道。然而,无铅电容器通常具有较低的能量密度,而高能量密度电容器通常含有铅,这是阻碍其广泛应用的关键问题。在这篇综述中,我们介绍了无铅储能 MLCC 的前景和挑战。首先介绍储能机理和器件特性;然后,从成分和结构优化等方面对储能用介电陶瓷进行总结;在详细介绍电极的制备工艺和结构设计后,讨论了储能用多层陶瓷电容器的最新进展;然后,从理论和技术的角度讨论了储能用多层陶瓷电容器在先进脉冲电源和高密度功率转换器方面的新兴应用;最后,讨论了实验室规模无铅储能用多层陶瓷电容器工业化的挑战和未来前景。关键词:多层陶瓷电容器(MLCC);无铅介电陶瓷;储能;高
如果此消息最终未被文档的正确内容所取代,则您的 PDF 查看器可能无法显示此类文档。您可以通过访问 http://www.adobe.com/go/reader_download 升级到适用于 Windows®、Mac 或 Linux® 的 Adobe Reader 的最新版本。如需有关 Adobe Reader 的更多帮助,请访问 http://www.adobe.com/go/acrreader。Windows 是 Microsoft Corporation 在美国和/或其他国家/地区的注册商标或商标。Mac 是 Apple Inc. 在美国和其他国家/地区的注册商标。Linux 是 Linus Torvalds 在美国和其他国家/地区的注册商标。
具有所需特性的合金可以通过控制组合物或加工[9,10]来定制微结构来开发。因此,研究人员搜索可以改善纯铅的概念的合金元素[11-13]。在此类元素中是钡和锡,增加了铅的增加,增加了拉伸强度和蠕变耐药性[14-20]。此外,钡引入铅锡合金还会增加硬度,减少电化学活性,从而增加腐蚀稳定性[21]。钡还可以使这些特性保持稳定,因为防止了过度衰老。高含量的锡的存在也抑制了铅基合金的过度分支过程[22]。另外,通过防止钝化并允许电池从深处排放的条件中弥补电池的钝化和充电,锡罐有助于网格的电化学性质。
