1. 借助或不借助夹具、固定装置、模板和模型完成工作任务。2. 根据工程要求和规范,使用夹具钻模板(JDT)、钻夹具(DJ)、定位夹具(LJ)、聚酯薄膜和精密测量设备等工具,对金属、复合材料和复合材料/钛堆叠中的结构部件和/或组件进行定位、布局、钻孔和安装紧固件,以连接主要结构的子组件。3. 使用各种手动和机械工具,包括精密对准、钻孔和测试设备。手动和自动/数控复杂工具,如轨道钻机、间隙人、微风、后标记、挤压器、偏置铆钉染料、柔性轨道和顶杆。4. 制作生产辅助工具以促进工作任务的完成。
摘要:本文旨在指出机身腐蚀的一些特性、外力对飞机蒙皮元素的影响以及它们对结构完整性的影响。腐蚀过程通常与飞机结构元素的疲劳有关,这是由许多因素引起的,例如载荷类型、材料性质、腐蚀环境等。本文的重点不是腐蚀过程,而是飞机机翼设计元素特有的载荷系数及其对关键结构元素腐蚀的影响。机翼腐蚀被认为是环境影响蒙皮和连接部件(铆钉、螺钉和焊接接头)受损表面保护的结果,这种影响是由机翼的静态和动态应力以及整体上各个结构元素的相互作用引起的。材料的疲劳进一步增强了各个结构元素的运行动态性。及早发现腐蚀过程对于飞机的整体安全通常至关重要。本文提出的建议是为了改进工作体系,确保飞机在抗腐蚀损伤方面的安全运行。
FAA 人为因素计划的目标是开发对行业和 FAA 人员都有用的产品。我们希望确定影响航空维修技术人员绩效的关键人为因素问题。然后,我们希望能够为行业提供背景信息和具体建议。这项工作的主要成果将是一本手册,我曾在过去的会议中提到过。我们希望这本手册成为行业和政府中许多不同用户的通用参考文本。例如,此文本应帮助规划维护工作计划的人。它应提供有关一个人在特定任务(例如检查铆钉等相同物品)上应工作多少小时的信息。该手册还应提供有关工作环境特征的信息,例如照明、温度、噪音和其他环境参数。我们期望这本手册的覆盖范围广泛,并且如我所指出的那样,对行业和 FAA 都有用。例如,我们希望向与行业合作监督航空公司维护的 FAA 检查部门提供有用的数据。
- 以前称为 REDUX 64-1 应用粘合剂,专为粘合和组装摩擦材料而设计,例如:刹车片、离合器和一般的菲罗多。其独特且经过长期测试的配方确保在钢、灰铸铁或轻金属鞋以及黄铜和青铜上具有非凡的附着力。具有不同特性的刹车片段可以采用单一制造工艺组装在同一支架上。采用 ARALDITE® 64-1 制成的接头可承受高达 250°C 的温度。粘合刹车片的性能远远优于铆接刹车片,因为它可以消除刹车盘的尖叫声和磨损。相对于总粘合表面而言,用 ARALDITE 64-1 粘合的摩擦材料的剪切强度比铆钉接头高 600%。技术数据特性 ARALDITE® 64 - 1 颜色浅棕色液体密度 gr/cm 3 约。 1.00 粘度 (mPa/s) 1500 - 1600 固体含量 39 – 44 % 主要溶剂 乙醇/甲苯 闪点 < 18 °C
'_ '~海上(码头)船舶故障,脆性断裂的概率成为焦点。与船舶故障相关的数据具有很好的相关性,因此,从激发这些研究的研究中可以学到很多东西。非船舶故障数据不存在类似的相关性,因此进行此项调查是为了补充船舶故障的研究。总共研究了 64 个结构故障以及天然气输送管道故障。这些故障发生在铆钉和焊接结构中,例如油箱桥梁、压力容器、烟囱、PM 库存、电力铲子,以及 M 天然气输送管线。结果表明,脆性破坏的历史至少可以追溯到 1879 年。结论是:(1)非船舶结构中的脆性破坏与船舶中的脆性破坏是相同的现象;(2)多种类型的船舶结构都会发生脆性破坏;(3)脆性断裂可以穿过铆钉接头;(4)没有证据表明随着焊接的出现,脆性破坏的发生率是降低还是增加;(5)与其他因素一起,热应力可能很重要;(6)残余应力不是脆性破坏的主要因素,但这种应力与其他因素一起,会引发表面破坏;(7)冶金变量的影响很重要; (S) 冷成型可提高脆性破坏的敏感性,但由于数据缺乏,其作用无法评估;(9) 在有数据的情况下,板的冲击强度一般低于破坏温度;(10) 在大多数情况下,非船舶脆性破坏的断裂起源于纤维制造缺陷,少数断裂起源于设计缺陷;(11) 似乎在所有情况下,断裂都起源于几何连续面; (12) 没有证据表明这些失效结构能显示各种焊接工艺对脆性断裂敏感性的影响;(13) 除焊接质量特别差的情况外,焊接焊缝没有断裂的趋势;(14) 绝大多数非船舶脆性断裂似乎发生在完全静态的条件下;(1.5) 结构的 AGC 似乎与脆性断裂无关;(10) 大多数工程规范允许使用已知特别容易发生脆性断裂的钢材。同时,除一个规范外,所有规范都将应力水平保持在极保守的值;(17) 最后,证明了脆性断裂是多种因素共同作用的结果。船。我没有任何一种易加工的材料能够完全防止其断裂,而且目前也没有已知的试验能够根据小试样的行为准确预测给定钢材在可能发生结构脆性破坏的情况下的性能,因此,精心的设计、材料的选择和良好的工艺对于防止结构脆性破坏至关重要。
摘要:航空工业中铝接头紧固件的检查是一项耗时且成本高昂但却是强制性的任务。直到今天,肉眼手动检查程序仍无法对损坏行为进行时间跟踪或对不同检查进行客观比较。数字检查方法解决了这两个方面的问题,同时大大缩短了检查时间。这项工作的目的是开发一种基于平面热波热成像和板状结构热不规则干扰分析的数字化自动化检查方法。为此,进行了超声锁相热成像和扫描激光多普勒振动测量的比较研究,并在一个可维修的飞机机身面板上对所有三种方法进行了基准测试。所提供的数据证实了使用所讨论的方法检测和鉴定铝制飞机机身面板中的沉头铆钉和螺钉的可行性。结果建议采用一种完全自动化的检查程序,该程序结合了不同的方法,并进行了一项研究,研究了更多的样本,以建立指示完好和损坏的紧固件的阈值。
• 基本设计概念:极限载荷、极限载荷、安全系数、安全裕度 • 飞机载荷:惯性载荷、载荷系数;设计练习 • 金属:产品形式、物理和机械性能、失效模式、设计允许值;热机械加工 • 纤维增强层压复合材料:产品形式、物理和机械性能;失效模式;设计允许值;加工 • 材料选择:铝、钛、钢、复合材料和新兴结构材料; • 静态强度设计:高载荷拉伸结构;组合载荷;设计练习 • 机械接头:螺栓和铆钉;粘合和焊接接头;凸耳和配件;设计练习 • 薄壁结构:紧凑梁的弯曲和扭转回顾 • 薄壁结构:薄壁梁剪切流分析简介 • 半张力现场梁;设计练习; • 有限元方法简介 • 屈曲和刚度要求设计:薄壁和组合结构的屈曲 • 部件设计:机翼和尾翼、机身、起落架、附件 • 损伤容限设计:结构裂纹扩展;断裂力学简介;临界裂纹长度;分析练习;大面积疲劳损伤;检查安排 • 耐久性设计:疲劳;分析练习;腐蚀 • 认证:分析和验证要求、部件和飞机测试要求
(U) A.任务描述 为传感器系统的开发提供资金,通过一系列渐进式升级,使国防部机载侦察机队的 SIGINT 能力现代化,以应对 2010 年的威胁。升级将采用开放系统方法,具有公认的标准、通用性、模块化、可扩展性和可重构性。渐进式方法将确保在未来预算年度资金到位时能够使用最新技术。开放式架构将为找到创新方法使用新技术的承包商提供竞争机会。它还将允许最大限度地使用为其他应用开发的商业现货 (COTS) 和政府现货 (GOTS) 功能。目标是到 2010 年完全符合所有 CRD 要求和所有联合机载 SIGINT 架构 (JASA)。为初始 JSAF 模块开发和修改领先的集成飞机 (EP-3E) 将提供一种机制来开始开发和评估 JSAF 组件。将为机载机队(有人和无人)提供可生产的 JSAF 组件,以集成到空军的 RC-135V/W(铆钉接头)、陆军的空中通用传感器 (ACS) 平台、空军的 U-2 和海军的 EP-3E 上。