摘要:鉴于改进结构装配方法的必要性日益增加,尤其是在航空工业中;通过比较当前使用的方法进行适当的研究,有助于选择正确的方法来实现制造目标。它还可以激发进一步的研究,以解决该领域的现有缺陷或提高现有方法的效率。出于上述动机,本文对压痕方法进行了仔细研究。本文将通过对不同性质的板材的实验结果来修订热压痕和冷压痕的主要特性。进行了拉伸试验和剪切试验,以评估每种压痕方法后的板材强度,并研究在进行实验时发现的各种故障。评估了压痕的状态、疲劳,尤其是径向裂纹和孔径。我们希望实现允许铆钉与周围材料表面齐平的压痕,并且铆钉头可以无缺陷地安装。由于航空航天飞行器、导弹系统和相关设备的制造和组装越来越复杂,本研究旨在为压花工艺提供启示;尤其是公羊币压花。公羊币压花方法分为冷压花(室温)和热压花(高温)。将本研究论文与之前的研究进行比较,
Electroimpact 和 Lockheed Martin 开发了用于 C-130J 后机身面板的自动钻孔和紧固系统。为将该系统整合到 Lockheed Martin 现有的制造模式中,并调整 Electroimpact 现有的铆接机系列以制造这些旧式飞机部件,我们克服了许多设计和制造挑战。自动化方面的挑战包括设计一个非常长但足够坚固和轻巧的偏置铆接砧,用于紧固在深圆周框架周围,自动送入非常短的“方形”铆钉(其长度与头部直径相似),为没有现有 3D 制造数据的传统部件创建零件程序和模拟模型,以及为飞机部件提供防撞保护,防止机器碰撞(考虑到模型固有的不确定性和飞机部件的独特几何形状)。在将系统整合到 Lockheed Martin 现有的制造方法中时,我们克服了其他挑战,同时避免中断正在进行的生产活动和交付计划。我们找到并实施了所有这些问题的创新和新颖的解决方案。最终成功实现了机尾钻孔和铆接工作的自动化,从而提高了制造质量和生产成本,并开发出了可应用于未来自动化系统的新技术。
Mako Advanced Materials LLC (Mako) 计划扩建其现有的内华达州南部工厂。Mako 于 2023 年 9 月在内华达州亨德森成立。Mako 从事先进材料领域的业务,专门为航空航天、能源、汽车和国防部门提供表面涂层、粘合剂、密封剂和弹性体,重点关注美国市场。在飞机结构中,复合材料因其出色的强度重量比、耐腐蚀性和设计灵活性而被广泛使用。粘合剂在粘合飞机结构中的复合材料和其他部件方面起着至关重要的作用。与铆钉和螺栓等传统机械紧固方法相比,它们具有减轻重量、增强结构完整性、更好的密封和绝缘性以及多功能性等优势。Mako 多样化的产品组合将为航空航天业提供出色的服务,确保公司成为其行业合作伙伴值得信赖和有价值的供应商。除了增长计划外,Mako 还坚定地致力于社区参与和环境可持续性。该公司优先考虑与当地社区的积极互动,并寻求在整个运营过程中实施环保做法。此外,Mako 还设想未来在该州进行扩张,以我们在亨德森的初始投资为基础,进一步为内华达州的经济繁荣做出贡献。来源:Mako Advanced Materials LLC
16. 摘要 根据 VNTSC 和全美航空快运运营商 Henson Aviation, Inc. 之间的合作研究与开发协议,1991 年 8 月在北卡罗来纳州温斯顿塞勒姆的全美航空维修站对波音 737 飞机的机身进行了剪切散斑演示检查。检查比较了剪切散斑技术与目前强制方法在检测机身脱粘方面的有效性。现代飞机机身采用粘合剂粘合,通常与铆钉结合使用。随着飞机的老化,粘合失效可能成为一个主要问题,因为它可能导致疲劳开裂、湿气侵入和随后的腐蚀。任何这些事件都可能导致机舱压力损失,有时还会导致灾难性的机身故障。检测脱粘的剪切散斑方法取决于飞机蒙皮在不同压力下的变形。当被相干光照射时,从蒙皮的任意两点反射的光的相位关系和强度会因这种变形而发生变化。可以检测到最小到 0.00025 毫米的表面变化,并将其显示为视野的实时图像。随着压力的变化,对连续图像进行比较可以解释粘合情况。对于此演示,剪切干涉发现了 31 处脱粘;超声波确认了 25 处脱粘。
基于电池总重量。根据报告的数据计算,Chang 研究小组通过使用内部铆钉实现了 131 Wh kg 1 (包括电池总重量)和 9.6 GPa 的弯曲模量。13然而,制造过程变得更加复杂。其他研究分别实现了 12.8 GPa 21 和 5.7 GPa 22 的拉伸模量,比能分别为 181.5 和 159 Wh kg 1,但仅包括活性电极材料的质量。如果包含其他组件(例如集电器、隔膜、电解质和包装),如此高的比能将显著下降(例如,40% – 60%)。在这项工作中,我们提出了一种准固体聚合物基电解质(QSPE),它具有适用于结构电池的良好结构和电化学性能。它由三官能丙烯酸酯单体和双盐电解质混合物组成,可在55°C的低温下进行热原位聚合。聚合后的电解质具有1.2 mS cm-1的良好离子电导率、176 MPa的弯曲模量和2.7 MPa的强度。因此,它可以有效地将负载从一层转移到另一层,而不会显著损害离子传输(图1A)。此外,这种电解质与NMC532正极和石墨负极都很稳定,因为我们在500次循环中实现了稳定循环,容量保持率为91%。采用这种QSPE和碳纤维织物/环氧复合材料封装,我们实现了显著提高的21.7 GPa的弯曲模量和184 MPa的弯曲强度,以及基于总电池质量的127 Wh kg-1的高比能。机械性能要低得多
2025 年 2 月 5 日 早上好,威廉姆斯主席、排名成员 Velázquez 和小企业委员会成员。 我叫 Karl Hutter,是 Click Bond 的首席执行官,Click Bond 是一家家族式制造商,总部位于内华达州卡森城,在康涅狄格州沃特敦设有另一个制造基地。 在 Click Bond,我们设计、制造和支持粘合紧固件和相关装配技术。 我们的产品遍布世界各地,甚至在太空中,用于航空、航天、汽车、船舶、工业和海上能源环境。 我们为民用和国防原始设备制造商和运营商提供服务,我们为我们在确保美国空中、陆地和海上国防方面所发挥的作用感到自豪。 Click Bond 是一家以创新为基础的家族企业。 我的父母于 1987 年创立了这家公司,将我父亲的发明天才(在创办 Click Bond 之前他拥有 80 多项专利)与我母亲的技术和商业敏锐度以及她自己在制造业的家庭背景中积累的经验相结合。他们的愿景简单而有力:胶粘紧固件和支架可以取代传统的车辆装配工艺,包括钻孔和安装螺栓和铆钉,以提高性能、设计灵活性、结构完整性以及腐蚀和疲劳性能。这种方法不仅可以提高效率,还可以消除整个制造过程中出现错误和废品的机会。38 年来,我们一直秉承这一愿景,开拓技术,延长关键系统的使用寿命,提高性能,降低成本,实现安全和可持续的全球航空运输,帮助美国作战人员成功执行任务,拓展人类在太空知识的视野。Click Bond 的故事是独一无二的,但它也与美国无数中小型制造商的故事相似:
1。遗传多样性是指单个物种中发现的变化。2。物种多样性是在区域或生态系统中发现的各种不同物种。3。生态系统多样性包括给定区域中的各种栖息地和生态系统。在热带区域估计的昆虫物种数量被用作推断其他群体的物种丰富度的基础。热带地区具有稳定的气候,使当地人口蓬勃发展而不会自然干扰。它们也具有很高的生产力,由于高太阳能接收而支持各种物种。热带地区的有利温暖和潮湿的条件促进了各种真菌,植物和藻类品种。回归和物种区域关系的斜率很重要,因为它影响了生物多样性模式。在较小的地区,无论分类学组或地区如何,坡度保持一致。但是,在较大的区域,曲线变得更陡。生物多样性随海拔高度增加。栖息地丧失,污染,气候变化和过度开发是地理区域中物种损失的主要原因。过度开发和外星物种入侵可能会导致生物多样性丧失,而由于损失了另一种密切相关的物种,因此在一个物种灭绝时会共灭。生物多样性在生态系统功能中的重要性是多方面的,其好处包括保持稳定性,生产力,韧性和整体健康状况。这也导致总生物量逐年变化,从而有助于生态系统的稳定性。戴维·蒂尔曼(David Tilman)的研究表明,较高的生物多样性会提高生产率,因为越来越多的植物可以将光合作用和分解物回收废物。丰富的生物多样性提供了防止自然和人类引起的干扰的保障,而Paul Ehrlich提出的Rivet Popper假设说明了如何像将飞机固定的铆钉一样互连。去除这些“铆钉”可能会导致生态系统拆卸和功能不当。神圣的树林是传统上受到保护的森林斑块,围绕着礼拜场所,当地社区积极参与其保护。在印度各个地区发现的这些地区,通过禁止森林砍伐,有助于保护稀有和濒危物种。生态系统服务包括控制洪水和土壤侵蚀之类的好处,这是通过生态系统的生物成分实现的。像植物(如植物)将土壤颗粒保持在一起,增加生育能力和生物多样性,控制洪水流动并保持二氧化碳和氧气之间的平衡。与植物相比,动物的多样化更大(72%vs 22%)可以归因于几个因素,包括它们能够迅速适应不断变化的环境,多样化的栖息地范围以及它们比植物少的物理约束的能力。此外,动物还发展了各种形态和行为适应,使它们能够占据不同的生态壁ni。1。接收刺激并响应它们的系统。2。3。4。5。6。7。动物可以四处走动,避免竞争,从而导致更高的多元化。植物不是流动的,因此它们需要更少的进化变化,从而导致多样性降低。如果我们希望一个物种灭绝,它是通过杀死没有生态作用的有害病原体来完成的。生物多样性意味着在地球上拥有多种类型的生命,例如支持生态系统平衡的动植物。生物多样性具有三种主要类型,它们是物种之间的遗传变异。生物多样性的丧失主要是由于栖息地丧失污染气候变化而不是新物种的剥削和入侵。8。多样化的生态系统有助于维持自然服务,例如授粉净化营养周期和气候调节。9。为了保护生物多样性,我们需要国家公园野生动物保护区生物圈保护区海洋保护区国际合作,例如CBD。10。第15章NCERT XII生物学中的生物多样性保护可帮助学生对数学原理有很好的了解。本章关于生物多样性和保护性是在12级生物学课程中进一步数学探索的基础。它使学生拥有基本技能,这些技能将在整个学术旅程中进行完善,包括解决问题和批判性思维。第2024-25页的NCERT书籍包括与生物学有关的各个章节,每个章节都集中在生物体的不同方面及其与环境的相互作用。这些章节是理解复杂的生物学概念并对主题进行全面掌握的基本基础。
2.1西北心脏地区的黄土高地的景观的特征是肥沃但容易侵蚀的风烧土壤,12 2.2南部心脏地带地区的许多地形是山区山区的,山谷陡峭,山谷和丰富的水。在许多世纪以来,山坡一直处于梯田以创建稻田18 2.3女性脱粒小米,使用新石器时代时代的技术几乎没有改变的技术25 2.4 2.4农民除草了最近种植的稻田。稻米每面积的土地都产生高收益的热量,但劳动密集型26 3.1带有鱼图案的磨光碗,来自Shaanxi的Banpo Neolithic Village,c。公元前5000年37 3.2两个Jade“ Pig-Dragons”,显然是吊坠,是从Heartland地区东北地区的Hongshan Culture,c。 3500 BCE 41 3.3 Jade cong (prismatic tube) from the Liangzhu Culture of the Lower Yangzi Valley, c. 3000 BCE.cong的角落的重复模式的模式是简化的,是liangzhu变质神灵的版本(比较图3.5)43 3.4 Jade Bi(刺穿的磁盘(刺穿的磁盘))来自下Yangzi Valley的Liangzhu培养物,c。公元前3000年44 3.5变质图,被认为是某种神灵,在下扬齐山谷的liangzhu文化中的玉器上,c。公元前3000年44 3.6 liangzhu文化中所谓的Lingjiatan Jade Plaque,证明了定向定向在Liangzhu文化和知识生活中的重要性46 3.7黑色软件Goblet,来自Longshan Culture,Shandong,Shandong,c。 2500 BCE.粘土容器似乎模仿了一种金属,与铆钉52 4.1固定在铜管上,用于变暖和供应小米啤酒,Erlitou培养物,c。公元前2000年。杯子经常在龙山培养坟墓中发现,有时在尸体顶部,也许给出了某种坟墓仪式的证据52 3.8投手,用于温暖和供应小米的啤酒,从山东的隆山较晚培养地点,与早期的青铜年龄Erlitou Culture,c。公元前2000年。这是心脏地带地区最早的现存青铜仪式之一64
空客在汉堡启用新的 A320 结构装配线 树立数字自动化新标准 #Airbus #A320 汉堡,2019 年 10 月 1 日——空客在汉堡启用了高度自动化的 A320 系列飞机机身结构装配线,展示了空客工业生产体系的演变。新工厂特别专注于制造 A321LR 的较长部件,拥有 20 台机器人、一种新的物流概念、激光测量自动定位以及数字数据采集系统。这些将进一步支持空客提高质量和效率的努力,同时为其工业生产体系带来更高的数字化水平。“通过采用一些最新技术和工艺,空客已经开始了在 A320 系列生产中树立新标准的旅程。这条新的机身结构装配线是 A320 系列产能提升的重要推动力。空客首席运营官 Michael Schoellhorn 表示:“提高自动化和机器人水平可以实现更快、更高效的制造,同时保持我们对质量的首要关注。”“鉴于 A320 系列的巨大成功和订单积压,我们正在采取必要措施,确保我们的生产系统能够与我们产品的卓越性相匹配,并能够满足客户对我们单通道飞机的需求。” 他补充道:“我们对汉堡的员工和工厂给予了高度信任和投资。我们现在需要履行对客户的承诺,同时确保整体竞争力。”对于初始段的组装,空客采用了一种模块化、轻型自动化系统,称为“Flextrack”,八个机器人在每个纵向接头上钻孔和沉头 1,100 到 2,400 个孔。在下一个生产步骤中,12 个机器人(每个机器人在七个轴上操作)将机身中段和后段与尾部组合成一个主要部件,每个轨道接头钻孔、沉头、密封和插入 3,000 个铆钉。除了使用机器人外,空客还在材料和零件物流中实施新方法和技术,以优化生产、改善人体工程学并缩短交货时间。这包括物流和生产水平的分离、以需求为导向的材料补给以及自动导引车的使用。汉堡结构装配工厂负责将单个机身外壳连接成段,以及将单个段最终组装到飞机机身。飞机部件在最终交付到法国、德国、中国和美国的总装线之前,会配备电气和机械系统。高效的 A320neo 系列(包括 A321)拥有天空中最宽的单通道客舱,采用了包括新一代发动机和鲨鳍小翼在内的最新技术,从第一天起,这些技术共同节省了 15% 以上的燃油和二氧化碳,到 2020 年将节省 20%,同时噪音降低 50%。迄今为止,A320neo 系列已获得来自 100 多家客户的 6,500 多份订单。
空客在汉堡启用新的 A320 结构装配线 树立数字自动化新标准 #Airbus #A320 汉堡,2019 年 10 月 1 日——空客在汉堡启用了高度自动化的 A320 系列飞机机身结构装配线,展示了空客工业生产体系的演变。新工厂特别专注于制造 A321LR 的较长部件,拥有 20 台机器人、一种新的物流概念、激光测量自动定位以及数字数据采集系统。这些将进一步支持空客提高质量和效率的努力,同时为其工业生产体系带来更高的数字化水平。“通过采用一些最新技术和工艺,空客已经开始了为 A320 系列生产树立新标准的旅程。这条新的机身结构装配线是 A320 系列产能提升的重要推动力。提高自动化和机器人水平可以实现更快、更高效的制造,同时保持我们对质量的首要关注,”空客首席运营官 Michael Schoellhorn 表示。“鉴于 A320 系列的巨大成功和订单积压,我们正在采取必要措施,确保我们的生产系统能够与我们产品的卓越性相匹配,并能够满足客户对我们单通道飞机的需求。” 他补充道:“我们对汉堡的员工和工厂给予了高度信任和投资。我们现在需要履行对客户的承诺,同时确保整体竞争力。”对于初始段的组装,空客采用了一种模块化、轻型自动化系统,称为“Flextrack”,八个机器人在每个纵向接头上钻孔和沉头 1,100 到 2,400 个孔。在下一个生产步骤中,12 个机器人(每个机器人在七个轴上操作)将机身中段和后段与尾部组合成一个主要部件,每个轨道接头钻孔、沉头、密封和插入 3,000 个铆钉。除了使用机器人外,空客还在材料和零件物流中实施新方法和技术,以优化生产、改善人体工程学并缩短交货时间。这包括物流和生产水平的分离、以需求为导向的材料补给以及自动导引车的使用。汉堡结构装配工厂负责将单个机身外壳连接成段,以及将单个段最终组装到飞机机身。飞机部件在最终交付到法国、德国、中国和美国的总装线之前,会配备电气和机械系统。高效的 A320neo 系列(包括 A321)拥有天空中最宽的单通道客舱,采用了包括新一代发动机和鲨鳍小翼在内的最新技术,从第一天起,这些技术共同节省了 15% 以上的燃油和二氧化碳,到 2020 年将节省 20%,同时噪音降低 50%。迄今为止,A320neo 系列已获得来自 100 多家客户的 6,500 多份订单。