摘要:碳纳米管增强的铜基质纳米复合材料具有巨大的潜力,在Mainery,微电子和其他应用中具有巨大的潜力。这些材料通常是通过粉末冶金工艺制备的,其中合并是高性能的关键步骤。为了提高密度和机械性能,作者探索了使用热振荡压力(HOP)来制备这种材料的使用。在各种温度下,碳纳米管增强的铜基质纳米复合材料分别由Hop和Hot Press(HP)合成。与HP在相同温度下制备的样品相比,由HP制备的样品表现出明显高的密度和硬度,这是因为HOP的振荡压力在烧结过程中产生了明显的塑料塑料。随着烧结温度的降低,变形缺陷的量逐渐增加,在增加硬度中起着关键作用。这项工作是在第一次进行实验证明的,HOP可以比HP产生更大的塑性变形以促进致密化,并且HOP可能是准备高性能碳纳米管增强铜基质基质纳米复合材料的非常有前途的技术。
1. 供水名称:输入进行采样的公共供水名称。 2. 公共供水标识 (WSSN):输入以 MI(密歇根州名称)开头的九位公共供水序列号;(例如,MI1234567)。 3. 人口:输入公共供水服务的人数。 4. 监测期:输入进行采样的监测期的开始和结束日期(例如,从 2023 年 6 月 1 日至 2023 年 9 月 30 日)。 5. 所需合规样本数量:此数量是根据基于人口的规定或当地卫生部门为此公共供水的铅/铜水龙头采样而设定的。 6. 收集的合规样本数量:注明在此监测期间为铅和铜分析而采集的水龙头样本数量。 7. 认证实验室名称:填写在监测期间对所采集样品进行铅和铜分析的认证实验室名称。 8. 按照下列要求填写采样位置图:建筑物名称、采样点编号、采样点位置、采样日期/时间、样品编号、铅结果(mg/L)、铜结果(mg/L)。 9. 是否按照批准的样品位置图对饮用水装置进行采样:标明是/否。 10. 确认所用采样点与上次监测期相同:标明是/否(如否,请提供评论) 11. 要求验证铅和铜 90 百分位数计算:标明是/否,表示您希望当地卫生部门验证您的结果。 12. 认证签名:供水系统授权签名人输入其姓名、日期、电话号码和电子邮件。 13. 复印或扫描已填妥的表格:请将这些表格的副本连同实验室结果一起提交给当地卫生部门,收件人:非社区计划协调员(电子邮件或普通邮件)。请保留副本以作记录。
为了寻找新的和替代能源,太阳能电池(SC)是环保,可持续和可再生能源的源泉。因此,提高SC的效率和降低成本是非常重要的任务,这些任务与太阳能的光伏转换密切相关。相应地,预计光伏元素的第三代磁盘有效,稳定和通过环保,节能和低成本技术产生。半导体纳米材料,尤其是金属氧化物和硅量子点[1-9]发挥了重要作用。这些材料对于光伏设备特别感兴趣,这是由它们的光学和电子特性归因于其表面和量子大小效应的解释。在吸收光层中应用半导体NP的应用是由诸如较大的表面积以有效吸收光吸收的大型表面积,负责提高功率转换效率的电荷载体的缩短[10],以及依赖尺寸的带量[11-13]的收集长度[11-13],允许其最大的调谐太阳能谱(符合太阳能光谱范围)(ev)(1.4 ins 1-1-14)。在适合此带隙能的材料中,最广泛使用的是硅,GAAS,
摘要:基于Zn的金属的激光粉末床融合(LPBF)具有产生定制的可生物降解植入物的突出优势。然而,在Zn激光熔化期间发生了大规模蒸发,因此调节激光能量输入和气体屏蔽条件以消除LPBF过程中蒸发烟雾的负面影响成为一个关键问题。在这项研究中,建立了两个数值模型,以模拟扫描激光与Zn金属之间的相互作用以及屏蔽气流与蒸发烟雾之间的相互作用。第一个模型通过将蒸发对能量,动量和质量的保护作用进行影响,预测了不同激光输入的蒸发率。以蒸发速率作为输入,第二个模型通过采取气体循环系统的效果,包括几何设计和流量速率,预测了在屏蔽气流的不同条件下蒸发烟雾的消除效果。在涉及足够激光输入和优化的屏蔽气流的情况下,在LPBF过程中,蒸发烟雾有效地从加工室中删除。此外,通过比较纯锌和钛合金的LPBF来讨论表面质量致密性的影响。已建立的数值分析不仅有助于找到基于Zn的金属LPBF的足够激光输入和优化的屏蔽气流,而且还有益于理解LPBF工艺蒸发的影响。
该论文报告了废物塑料的热和催化热解的产生,包括聚丙烯(PP),高密度聚乙烯(HDPE),低密度聚乙烯(LDPE)和聚苯乙烯(PS)。为此,在催化热解中使用了三种不同类型的沸石(4A,ZSM-5和13x)和Cu/4a,Cu/ZSM-5和Cu/13x。催化剂的酸度和质地特性是聚合物分解的主要参数。催化剂的酸度顺序如下:Cu/13x> Cu/4a> Cu/ZSM-5。热热解的主要产物是液体,主要是线性重烃,而铜/沸石催化剂的催化热解产生的液态产物在较低的温度下含有更多的支撑碳氢化合物。通过使用FTIR和GC/MS技术进行了分析的液体产品。结果表明液态产物中存在石蜡,烯烃和芳族烃。还发现,在Cu/13x(较高的酸度,较大的孔径和高表面积)上生产了轻型液态烃和气态产物。对于Cu/4a,Cu/13x和Cu/ZSM-5催化剂,催化热解的主要液体产物分别在柴油,汽油和煤油范围内。
((1)) 一百多年前,1917 年,吉尔伯特·弗纳姆发明并申请了加法多表流密码的专利,即弗纳姆密码 [1]。弗纳姆发明并在他的专利中描述了一种电传打字机加密器,其中预先准备好的密钥保存在纸带上,逐个字符地与消息组合以对其进行加密。为了解密加密信息,必须使用相同的密钥,再次逐个字符组合,从而产生解密的消息。弗纳姆专利中描述的组合函数是 XOR 运算(布尔代数或二进制和模 2 的独家替代方案,本质上是经典逻辑控制非运算,即 CNOT 门,仅丢弃控制位并留下目标位以满足不可逆布尔代数要求),应用于用于对 Baudot 码 [2](二进制编码的早期形式)中的字符进行编码的位(原始专利中的脉冲)。虽然 Vernam 在其专利技术描述中没有明确使用术语“XOR”,但他在继电器逻辑中实现了该操作。以下示例源自 Vernam 专利的描述,用 XOR 程序取代原始的电组合函数实现电传打印设备操作的逻辑:明文字符为“A”,在 Baudot 码中编码为“+ + −−− ”,密钥字符为“B”,编码为“+ −− + +”;当对明文“+ + −−− ”和密钥“+ −− + +”进行 XOR(仅当两个输入为真和假时才返回真的逻辑运算)时,得到代码“− + − + +”,在 Baudot 中读取为“G”字符;除非知道使用的密钥是字符“B”,否则无法猜测字符“G”实际上解密为字符“A”;再次对“G”(“ − + − + +”)和“B”(“+ −− + +”)进行异或,得到鲍多码“+ + −−− ”,解密后为字符“A”。在现代广义表示中,Vernam 密码对经典信息位进行操作:0 或 1。任何经典信息都可以二进制编码为 0 和 1 的序列,这当然是绝大多数当代电子设备(包括计算机和网络)运行的信息架构。让我们考虑以下示例:一条消息“Hello”,编码(UTF8)为 M=0100100001100101011011000110110001101111(每个字符 8 位,一共 40 位)。如果使用随机(无意义)密钥,例如 K=1101010110110001011101011101 001000110100,则异或加密消息(M XOR K )将显示为 E=1001110111010100000110011011111001011011,这也没有任何意义。如果密钥是真正随机且私密的,那么没有它就无法计算原始消息是什么。只有拥有密钥 K ,才能再次将加密消息 E 与密钥 K 按位异或,以返回原始消息 M 。((2)) 在专利授予 Vernam 几年后,Joseph Mauborgne(美国陆军通信兵团上尉)对 Vernam 的发明进行了修改,将密钥改为随机密钥。这两个想法结合在一起,实现了现在著名的一次性密码本 (OTP) 经典密码。仅仅 20 年后,同样在贝尔实验室工作的 Claude Shannon 在他现在奠定基础的信息论中正式证明了一次性密码本在正确使用随机密钥实现的情况下是牢不可破的(这些证明是在 1941 年二战期间完成的,并于 1949 年解密后公布 [3])。在同一篇论文中,香农还证明了任何牢不可破的(即理论上安全的)系统都必须具有与一次性密码本基本相同的特性:密钥必须与消息一样长并且真正随机(这也意味着密钥永远不会被全部或部分重复使用并且必须保密)。美国国家安全局 (NSA) 称 Gilbert Vernam 的专利(该专利催生了一次性密码本概念)“可能是密码学历史上最重要的专利之一”[4]。最近,2011 年人们发现,一量子比特密码本实际上是在 1882 年 Frank Miller 授予 Gilbert Vernam 专利的 35 年前发明的。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。 20 世纪 70 年代,人们转向了一种名为非对称密码学(或公钥密码学)的新范式。2011 年,人们发现 One-Qubit Pad 实际上早在 1882 年 Frank Miller 向 Gilbert Vernam 颁发专利之前 35 年就已发明。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。在 20 世纪 70 年代,人们转向了一种称为非对称密码学(或公钥密码学)的新范式,2011 年,人们发现 One-Qubit Pad 实际上早在 1882 年 Frank Miller 向 Gilbert Vernam 颁发专利之前 35 年就已发明。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。在 20 世纪 70 年代,人们转向了一种称为非对称密码学(或公钥密码学)的新范式,
为波兰最大的城市之一供热和供电并配备 TES 系统的三座城市 (DHS) 均采用了蒸汽缓冲系统。所分析的三座 TES 的容量从 12,800 到 30,400 立方米不等,水箱直径从 21 到 30 米不等,壳体高度从 37 到 48.2 米不等。在 TES 水箱中使用蒸汽缓冲系统的主要目的是保护其中储存的水不会通过位于水箱顶部的调压室和安全阀吸收周围大气中的氧气。这里介绍的用于向水箱注入和排出热水的上部孔口和用于循环水的吸水管的技术解决方案使我们能够在蒸汽缓冲系统中节省大量能源。上部孔口和吸水管末端均可通过使用浮筒移动。由于采用了该技术解决方案,在 TES 水箱上部的上部孔口上方形成了稳定的绝缘水层,从蒸汽垫空间到水箱中储存的热水的对流和湍流热传输受到显著限制。最终,与 TES 水箱中蒸汽垫系统的经典技术解决方案(即上部孔口和循环水管)相比,热通量减少了约 90%。本文提出的简化分析及其结果与蒸汽垫空间到 TES 水箱上部储存的热水的热流实验数据的比较充分证实了所用热流模型的有效性。
非传统酵母东方伊萨酵母 (Issatchenkia orientalis) 的强健特性使其能够在高酸性条件下生长,因此,人们对使用多种碳源生产有机酸的兴趣日益浓厚。最近,东方伊萨酵母的遗传工具箱的开发,包括附加型质粒、多个启动子和终止子的特征以及 CRISPR-Cas9 工具,简化了东方伊萨酵母的代谢工程工作。然而,由于缺乏有效的多拷贝整合工具,多重工程仍然受到阻碍。为了促进通过多重 CRISPR-Cas9 介导的基因组编辑构建大型复杂代谢途径,我们开发了一条生物信息学流程来识别和确定全基因组基因间位点的优先级,并表征了位于 21 个基因间区域的 47 个 gRNA。对这些位点进行了向导 RNA 切割效率、基因盒的整合效率、由此产生的细胞适应度和 GFP 表达水平的筛选。我们进一步利用来自这些已充分表征的基因座的组件开发了一种着陆垫系统,该系统可帮助利用单个引导 RNA 和用户选择的多个修复模板整合多个基因。我们已经证明了利用着陆垫同时将 2、3、4 或 5 个基因整合到目标基因座中,效率超过 80%。作为概念验证,我们展示了如何通过一步整合多个位点的五个基因拷贝来提高 5-氨基乙酰丙酸的产量。我们进一步证明了该工具的效率,即利用单个引导 RNA 和五个不同的修复模板整合五个基因表达盒,构建了琥珀酸生产代谢途径,从而在批量发酵中生产出 9 g/L 的琥珀酸。这项研究证明了单个 gRNA 介导的 CRISPR 平台在非传统酵母中构建复杂代谢途径的有效性。该着陆垫系统将成为 I. orientalis 代谢工程的宝贵工具。
正如 Edwards 等人 [1] 所记录的,LACC 以前的学生也证实,阻碍这些材料利用的一个障碍是它们倾向于分解成更稳定的 Cu 8 HL 6 一氢化物碎片,尤其是在暴露于荧光和/或酸性条件下时。然而,LACC 的学生还证实,更大的结构可以通过添加氢来再生。这一关键观察结果,即簇分解可以逆转,支持了铜氢化物簇可用作储氢材料的前提。
前瞻性陈述不能保证或预测未来绩效。前瞻性陈述涉及已知和未知的风险,不确定性和其他因素,其中许多因素超出了Rio Tinto的控制,这可能会导致实际结果与本演讲中表达的结果有实质性差异。在本演示文稿中不依赖任何前瞻性陈述,包括关于未来的投资决策。