简介。在可见光和近红外 (NIR) 范围内具有等离子体特性的金属,例如金、银和铜,可用于光学、电子、传感和其他应用,目前备受关注 [1, 2]。重要的问题是等离子体特性的稳定性,这通常会限制某些金属的使用,因为它们具有化学反应性和可能产生杂散效应。用于等离子体的最常见材料是金,它具有出色的光学性能以及抗氧化性。金在等离子体中的局限性包括其价格高昂以及与微电子技术工艺不兼容。银由于光学损耗低而表现出优异的性能,也得到了广泛应用 [3-7],但通常被认为由于化学稳定性较低而吸引力较小,因此等离子体稳定性也较低 [8]。铜是另一种具有出色光学性能的金属。与金相比,它价格低廉,在可见光和近红外范围内的光学损耗较低。铜在等离子体应用中的优势已被充分发挥,例如在超低损耗铜等离子体波导和生物传感应用中 [9-13]。铜在暴露于环境大气时容易发生相对较快的表面氧化 [14]。在正常条件下,主要产物是 Cu 2 O,CuO 的贡献很小或没有。因此,要将 Cu 膜用于等离子体应用,需要保护结构表面免受氧化引起的降解。可以通过应用 SiO 2 、Al 2 O 3 甚至石墨烯的保护壳/涂层来实现 [10, 15]。在这项工作中,我们测试了一种简单的紫外臭氧处理方法,该方法可在铜膜上快速形成一层薄氧化层。该氧化层有效地保护了铜免受随后与氧化有关的等离子体特性降解的影响,这最近已在 Cu 纳米粒子中得到证实 [16]。我们对形成的氧化层进行了复杂的分析。我们预计,本文提出的结果将作为一种简单有效的方法,用于保留薄铜膜的等离子体特性,以用于非线性光学或传感应用。样品制作。使用 NEE-4000 电子束蒸发系统中的电子束蒸发沉积厚度为 28 nm 的铜膜。在室温下,将顶部覆盖有 2 nm 厚 SiO 2 层的干净硅晶片放置在电子束蒸发器的真空室中,压力为 3×10 7 Torr。作为沉积材料,使用纯度为 99.99% 的铜颗粒。沉积速率约为 2 Å/s。在一个周期内同时制造了 8 个相同的样品。引用的铜膜“厚度”是
摘要:碳纳米管增强的铜基质纳米复合材料具有巨大的潜力,在Mainery,微电子和其他应用中具有巨大的潜力。这些材料通常是通过粉末冶金工艺制备的,其中合并是高性能的关键步骤。为了提高密度和机械性能,作者探索了使用热振荡压力(HOP)来制备这种材料的使用。在各种温度下,碳纳米管增强的铜基质纳米复合材料分别由Hop和Hot Press(HP)合成。与HP在相同温度下制备的样品相比,由HP制备的样品表现出明显高的密度和硬度,这是因为HOP的振荡压力在烧结过程中产生了明显的塑料塑料。随着烧结温度的降低,变形缺陷的量逐渐增加,在增加硬度中起着关键作用。这项工作是在第一次进行实验证明的,HOP可以比HP产生更大的塑性变形以促进致密化,并且HOP可能是准备高性能碳纳米管增强铜基质基质纳米复合材料的非常有前途的技术。
1. 供水名称:输入进行采样的公共供水名称。 2. 公共供水标识 (WSSN):输入以 MI(密歇根州名称)开头的九位公共供水序列号;(例如,MI1234567)。 3. 人口:输入公共供水服务的人数。 4. 监测期:输入进行采样的监测期的开始和结束日期(例如,从 2023 年 6 月 1 日至 2023 年 9 月 30 日)。 5. 所需合规样本数量:此数量是根据基于人口的规定或当地卫生部门为此公共供水的铅/铜水龙头采样而设定的。 6. 收集的合规样本数量:注明在此监测期间为铅和铜分析而采集的水龙头样本数量。 7. 认证实验室名称:填写在监测期间对所采集样品进行铅和铜分析的认证实验室名称。 8. 按照下列要求填写采样位置图:建筑物名称、采样点编号、采样点位置、采样日期/时间、样品编号、铅结果(mg/L)、铜结果(mg/L)。 9. 是否按照批准的样品位置图对饮用水装置进行采样:标明是/否。 10. 确认所用采样点与上次监测期相同:标明是/否(如否,请提供评论) 11. 要求验证铅和铜 90 百分位数计算:标明是/否,表示您希望当地卫生部门验证您的结果。 12. 认证签名:供水系统授权签名人输入其姓名、日期、电话号码和电子邮件。 13. 复印或扫描已填妥的表格:请将这些表格的副本连同实验室结果一起提交给当地卫生部门,收件人:非社区计划协调员(电子邮件或普通邮件)。请保留副本以作记录。
为了寻找新的和替代能源,太阳能电池(SC)是环保,可持续和可再生能源的源泉。因此,提高SC的效率和降低成本是非常重要的任务,这些任务与太阳能的光伏转换密切相关。相应地,预计光伏元素的第三代磁盘有效,稳定和通过环保,节能和低成本技术产生。半导体纳米材料,尤其是金属氧化物和硅量子点[1-9]发挥了重要作用。这些材料对于光伏设备特别感兴趣,这是由它们的光学和电子特性归因于其表面和量子大小效应的解释。在吸收光层中应用半导体NP的应用是由诸如较大的表面积以有效吸收光吸收的大型表面积,负责提高功率转换效率的电荷载体的缩短[10],以及依赖尺寸的带量[11-13]的收集长度[11-13],允许其最大的调谐太阳能谱(符合太阳能光谱范围)(ev)(1.4 ins 1-1-14)。在适合此带隙能的材料中,最广泛使用的是硅,GAAS,
该论文报告了废物塑料的热和催化热解的产生,包括聚丙烯(PP),高密度聚乙烯(HDPE),低密度聚乙烯(LDPE)和聚苯乙烯(PS)。为此,在催化热解中使用了三种不同类型的沸石(4A,ZSM-5和13x)和Cu/4a,Cu/ZSM-5和Cu/13x。催化剂的酸度和质地特性是聚合物分解的主要参数。催化剂的酸度顺序如下:Cu/13x> Cu/4a> Cu/ZSM-5。热热解的主要产物是液体,主要是线性重烃,而铜/沸石催化剂的催化热解产生的液态产物在较低的温度下含有更多的支撑碳氢化合物。通过使用FTIR和GC/MS技术进行了分析的液体产品。结果表明液态产物中存在石蜡,烯烃和芳族烃。还发现,在Cu/13x(较高的酸度,较大的孔径和高表面积)上生产了轻型液态烃和气态产物。对于Cu/4a,Cu/13x和Cu/ZSM-5催化剂,催化热解的主要液体产物分别在柴油,汽油和煤油范围内。
纳米层压膜是由不同材料交替层组成的复合膜 [1]。这些多层纳米结构因能够调整其机械或物理性质以用于各种特定应用而备受关注。例如,在微电子领域,人们考虑将其用作介电绝缘体 [2,3]。事实上,人们现正致力于制备具有高介电常数和良好化学/热稳定性的多组分体系。特别是 Al 2 O 3 -HfO 2 纳米层压膜似乎是最有前途的体系,可用于硅基微电子器件 [4-9] 以及下一代电力电子器件 [10-15]。能够充分利用 Al 2 O 3 和 HfO 2 单一材料的最合适性质,促使人们研究将它们组合成层压体系。实际上,众所周知,Al 2 O 3 具有极其优异的化学稳定性和热稳定性、大的带隙(约 9 eV)、与不同半导体衬底的带偏移大,但其生长会形成高的氧化物陷阱电荷密度,但其介电常数值并不高(约 9)[16]。对于 HfO 2 介电氧化物,虽然可以实现相当高的介电常数值(约 25),但由于其在相对较低的温度(约 500°C)下从非晶态转变为单斜晶态,因此可靠性较低,并且由于其带隙很小(5.5 eV)所以漏电流密度高[16]。在这种情况下,由两种 Al 2 O 3 -HfO 2 高 k 氧化物组成的纳米层状结构是提高热稳定性和维持高介电常数值的有前途的解决方案。
A a A = availability 可用性 Å = angstrom 埃 @ = at 1.单价 2.电子邮件地址账号和域名之间的分 隔符 A-A = analog-analog 模拟 - 模拟 A&B bit signaling A 和 B 位信令 A-B cut mixer 一级图像混合器 , A-B 图像混合器 A&B leads A 线和 B 线 A band A 波段 A Block 1.( 复式人工交换局 ) 甲交换台 , A 交换台 2.甲 盘 , A 盘 A carrier = alternate carrier 甲类电话公司 , 另一种电 话公司 A condition ( 起止式传输中的 )A 状态 , 起状态 , 启动空 号状态 A-D = analog-digital 模 ( 拟 ) —数 ( 字 ) A/D = analog-digital 模数转换 A/D coder 模数转换器 A/D conversion 模数转换 A/D converter 模 ( 拟 )/ 数 ( 字 ) 转换器 A interface A- 接口 A-law coding A 律编码 A/M = automatic/manual 自动 / 人工 A operator ( 复式人工交换局 ) 甲台话务员 A party 主叫方 , 主叫用户 A register A 寄存器 , 运算寄存器 A/Z 起 / 止脉冲 , 起 / 止脉冲比 , 空号 / 传号脉冲 , 空号 / 传 号脉冲比 AAA = authentication, authorization and accounting ( 移动通信 ) 鉴权 , 授权与计费 AAB = automatic alternative billing 自动更换记账 / automatic answerback 自动应答 AAL = ATM adaptation layer 异步转移传递模式适配层 , ATM 适配层 AAL1 ATM 适配层 1 AAL2 ATM 适配层 2 AAL3/4 ATM 适配层 3/4 AAL5 ATM 适配层 5 AARP Apple Talk 地址解析协议 abac 计算图表 , 列线图 , 诺模图 abac-parameter 四端网络参数 , 四端网络参量 abandon call 中途放弃呼叫 abandon pause 呼叫中途挂机 , 未接通暂停 abandoned call 放弃的呼叫 abandoned call attempt 放弃的试呼 abandoned traffic 损失业务 , 放弃的业务 abatement 1.抑制 , 消除 2.废料 Abbe condenser 阿贝聚光镜 Abbe number 阿贝数 , 色散系数 abbreviated address 缩位地址 , 缩写地址 abbreviated addressing 短缩寻址 abbreviated call 缩位呼叫 , 缩位拨号 , 简呼 abbreviated character 简化字符 abbreviated dialing 缩位拨号 abbreviated signal code 缩写信号码 abbreviative notation 缩写标记 ABD = abbreviated dialing 缩位拨号 abd technique 诱导技术 abduction 诱导 , 推断 , 推测 abductive reasoning 反绎推理 abductive technique 诱导技术 abecedarian 按顺序排列的 Abel transform 阿贝尔变换 Abelian group 阿贝尔群 abend 异常终止 , 异常结束 aberration 1.越轨 , 偏差 2.像差 , 色差 3.失常 , 畸变 4.光行差 aberration curve 像差曲线 aberration function 误差函数
红色的数字表示12月份的季度记录,Kamoa-Kakula在浓缩层中提供了创纪录的47,058吨铜的产量。本月以每年570万吨的年化汇率铣削的3阶段集中器,比设计能力高出13%,平均恢复速率为86.6%,符合设计参数。Kamoa-Kakula的高级和中级矿石表面储备总计约419万吨,估计的平均平均级为3.18%。12月底,库存中的铜中含有约133,000吨。年底,库存中约有30,000吨未售出的铜,高于第三季度末的16,000吨未售铜。未售出的铜的清单在Lualaba Copper冶炼厂(LCS)进行了通行费用,预计将在第一季度减少。图1:Kamoa-Kakula在2024年铜生产的每月增长
人工智能 (AI) 通常被视为下一代通用技术,可在众多工业领域快速、深入和深远地应用。新型通用技术的主要特征是能够实现可能提高生产率的新生产方式。然而,到目前为止,只有极少数研究调查了人工智能在企业层面对生产力的可能影响;大概是因为缺乏数据。我们利用企业采用人工智能技术的独特调查数据,并使用德国企业样本估计其生产力效应。我们同时使用横截面数据集和面板数据库。为了解决人工智能采用的潜在内生性,我们还实施了 IV 方法。我们发现人工智能的使用对企业生产力产生了积极而显著的影响。这一发现适用于人工智能使用的不同衡量标准,即人工智能采用的指标变量,以及公司在其业务流程中使用人工智能方法的强度。
