充分获取某些“关键矿物”对于实现到 2050 年消除全球净二氧化碳 (CO 2 ) 排放的广泛承诺至关重要(尽管中国和印度等主要排放国分别将目标定为 2060 年和 2070 年)。 2 实现这些目标的重中之重是实现全球汽车电气化并积极转向可再生能源发电,这是能源转型的两个主要方面。 3 虽然各种金属和稀土元素已经受到政府、媒体、智库和大学的极大关注,但最被低估的关键矿物之一也是最熟悉和最基本的矿物之一——铜。更深层次的电气化需要电线,而电线主要由铜制成。此外,铜矿床通常含有其他关键矿物,这些采矿作业会产生大量其他金属的副产品,例如钴、钼和镍。
图使用Cu-ag纳米颗粒的烧结过程的10示意图。(a)烧结前的关节; (b)在烧结过程中加入纳米颗粒和Cu底物之间的界面; (c)在烧结过程中加入纳米颗粒; (d)烧结后的关节; (e)两个相邻的Cu-ag核壳纳米颗粒的初始表面; (f)在Cu纳米颗粒表面上首映的微小的Ag纳米颗粒; (g)Cu-ag核壳纳米颗粒与Ag Neck
石墨烯/铜复合粉具有石墨烯涂层球形铜粉的独特核心壳结构,石墨烯和铜的复合材料充分利用了其力学,电力和热力学的协同优势。
高温超导体由于其独特的电子特性和非常规的超导行为而引起了极大的关注。尤其是,由高能离子植入,压力和电磁场等外部场引起的高体性超导材料的相变已成为研究热点。但是,潜在的机械主义尚未完全理解。第一原理计算被广泛认为是深入探索这些内在机制的有效方法。在这项研究中,使用第一原理计算来研究氧空位现象对不同功能下YBA 2 Cu 3 O 7(YBCO 7)的电子传递性能和超导性能的影响(PBE,PBE + U,HSE06)。结果表明,氧空位显着改变了带的结构,并且在不同功能的预测中观察到了考虑的差异。YBA 2 Cu 3 O 6(YBCO 6)的计算带隙范围为0至1.69 eV。较大的带隙表明是绝缘状态,而没有带隙的缺乏表明材料保持金属。通过将结果与实验结果进行比较,我们发现HSE06功能提供了最合理的预测。带隙的存在或不存在主要受铜轨道的影响。氧气空位会导致材料的C轴拉长,这与实验中He-ion辐照后X射线差异(XRD)分析中观察到的趋势是一致的。我们的发现有助于解释在外部田地下,尤其是He-Ion Irra-priation的金属 - 绝缘体相变,并为开发高温超导材料及其设备应用提供了理论基础和新见解。
本文介绍了对硫化物矿石的铜生物侵蚀的早期发展的简要回顾,并讨论了其从巴基斯坦从土著硫化物矿石沉积中提取铜的预期。铜的形式存在于辣椒(Cufes 2),辣椒(Cu 2 s),Covellite(Cus),Bornite(Cu 3 Fes 3),Enargite(Cu 3 Fes 3),Cu 3 Ass 4)和Tennantite(Cu 3 Ass 3),是最重要的重要铜(Cu 3 Ass 3),这是最重要的铜在硫化铜和甲型型号(柱状型)中,孢子型(Strate-Strate-contrancient and Strate-coundert)(硫化物沉积。黄铁矿(FES 2)和其他金属(Ni,Co,Mo,Zn等)硫化物矿物质也存在于硫化矿石沉积物中。在浸出溶液中硫酸盐(FES 2)(FES 2)的细菌氧化和Cu-硫化物矿物质(S)中,在浸出溶液中在浸出溶液中产生硫酸(H 2 SO 4),硫酸铁(Fe 2(So 4)3)和硫酸盐Cuso 4的硫酸和硫酸盐CUSO 4和氧硫化物矿物质(S)由酸性fe-氧化和氧化氧化剂进行了改良,从而产生。硫酸(H 2 SO 4)充当利克西(浸出剂)和硫酸铁(Fe 2(So 4)3)作为墨西哥铜矿的生物素质过程中的氧化剂(CUFES 2)。由于低pH值促进矿物质的质子攻击,并减轻了浸出溶液中金属的沉淀,因此生物无能的反应在pH 1.5-3.0处是最佳的。可溶性铜通过从酸性铜浸出液中的溶剂提取(SX)回收,在下游加工过程中进行了剥离/洗脱,然后进行电工(EW),以生产生物含量的铜铜(99.9%CU)产品。铜是从硫矿石和采矿废物中提取的,并使用堆和倾倒生物渗入过程在商业规模上提取。通过将残留物变成价值,这是一个独特的机会,可以在商业规模上引入创新的环境友好型铜提取技术,从而被认为是高度盈利的。可以将生物渗入过程用于提取Cu和相关的有价值的金属,从土著低级,截止等级,泡沫尾矿和硫化物矿床的采矿废物
pec:chiarazictella@pec.it orc ID:0000-0001-9047-1575 Scopus作者ID:57217001202当前位置2024年4月2024年 - 托迪:AIRC在该项目中授权的项目中,该项目有权:“在不编码的RNA H19 ins in in in in in in in in in in in in forne forne colon rna H19中,生物医学,神经科学和高级诊断(BI.N.D) - 巴勒莫大学生物化学实验室(UNIPA)。以前的职位2020-FEB 2024:博士学位。该项目中实验性肿瘤学和手术的学生的标题为:“对非编码RNA(INCH19和miR-675)控制肿瘤进展的分子机制的研究和对结直肠癌药物治疗的抗性”,bi.n.d- unipa。博士的日期学位23/02/2024。2020年1月至1020年:该项目的研究生研究员题为:“研究非编码RNA H19及其基因内miR-675-5p之间的相互作用:原发性或转移性结肠癌的新目标”,de.bi.n.d -unipa; 2019年10月至12月:细胞和分子生物学实验室,生物学和遗传学部分的研究生自愿实习 - 部门bi.n.d -unipa。教育和培训2020年11月 - 2024年:博士学位在实验肿瘤学和手术中 - 周期XXXVI,系BI.N.D-细胞和分子生物学,生物学和遗传学部分,Unipa。2023年11月:作为生物学家实践的许可(A节)。评估:50/50。2017-19:医学与分子医学硕士学位(LM-9),医学与外科学院-Unipa。硕士学位的日期18/10/2019,评估:110/110兼豪华奖。2014-17:Unipa生物科学学士学位(L-13)。学士学位的日期18/10/2017。
首字母缩略词: ACGIH:美国政府工业卫生学家会议 C:摄氏度,F:华氏度 CAA:清洁空气法案 CAS:化学文摘社 CSA:加拿大标准协会 CEPA:加拿大环境保护法案 CERCLA:综合环境反应、赔偿和责任法案 DOT:运输部 EHS:极其危险物质 EPCRA:紧急计划和社区知情权法案 IARC:国际癌症研究机构 IMO:国际海事组织 LD50:50% 致死剂量 LC50:50% 致死浓度 NIOSH:国家职业安全与健康研究所 NTP:国家职业安全与健康研究所 MSHA:矿山安全与健康管理局 OSHA:职业安全与健康管理局 RCRA:资源保护与回收法案 RTK:知情权 RQ:可报告数量 SARA:资源保护与回收法案 TSCA:有毒物质控制法案 TPQ:阈值规划数量 WHMIS:工作场所危险材料信息系统 wt.:重量
gators 仅包括单一温度数据(例如室温),而不包括时间相关曲线(例如应力-应变、疲劳或蠕变),则不包括数据。此类调查通常记录趋势