我们管理层的 ESG 领导结构也反映了我们对 ESG 和可持续性问题的关注,以及我们为所有利益相关者提供价值的承诺。企业责任和 DEI 职能由我们的首席企业责任和多元化官管理,他同时担任标普全球基金会董事会主席。企业责任团队指导公司努力将标普全球对我们的可持续性和多元化、公平和包容性等重要主题的影响降至最低,并与整个企业的其他关键内部利益相关者进行协调。该团队与我们的执行委员会一起管理公司的影响力和 DEI 报告,并定期向董事会通报我们的战略、活动和进展情况。其他高级领导也通过内部委员会提供意见,例如我们的净零监督小组、DEI 委员会和环境健康与安全委员会。
免责声明 本文提供的数据的知识产权归 S&P Global 和/或其附属公司所有或已获授权。未经 S&P Global 事先同意,不得擅自使用本文中出现的任何数据,包括但不限于复制、分发、传输或以其他方式使用。S&P Global 对本文中包含的内容或信息(“数据”)、数据中的任何错误、不准确、遗漏或延迟,或依赖数据采取的任何行动不承担任何责任、义务或义务。在任何情况下,S&P Global 均不对因使用数据而产生的任何特殊、偶然或间接损害负责。采购经理人指数™ 和 PMI® 是 S&P Global Inc 的商标或注册商标,或已授权给 S&P Global Inc 和/或其附属公司。
2025 年堪萨斯州 4-H 牲畜耳标程序 所有被提名参加 2025 年堪萨斯州博览会和/或堪萨斯州青少年牲畜展的动物都必须使用堪萨斯州 4-H EID(电子识别)耳标。这适用于市场牛肉、商业小母牛、市场羔羊、商业母羊、所有肉用山羊、市场猪和商业母猪。 订购标签 堪萨斯州 4-H EID 标签将从动物科学与工业系的 KSU 青年牲畜计划订购。请参考代理电子邮件、在线或订单顶部列出的订单截止日期。 牛肉标签订单必须在 2024 年 12 月 15 日之前提交,不被视为特殊订单。小型牲畜标签订单将于 2025 年 1 月 15 日到期。付款必须随标签订单一起提交才能被接受。今年,我们将恢复使用一页纸质表格。但是,推广单位应在邮寄之前先将填妥的表格副本通过电子邮件发送给 Lexie Hayes (adhayes@ksu.edu),以确保他们的标签需求包含在州计数中。负责管理 4-H/EID 标签的代理人需要在截止日期前签署表格并将其连同支票一起邮寄给堪萨斯州立大学。有关 4-H/EID 标签的更多资源发布在 KSU 青年畜牧业计划网站的“EID 标签”选项卡下。经批准的绵羊和肉山羊 EID 标签的选项仍然有限。最好的选择是我们去年 (2024) 使用的新型小反刍动物轻量级 EID 标签。它体积小,呈方形,类似于大约 10 年前使用的标签。必须使用黑色(或蓝色,取决于标记器)插件来粘贴新的绵羊和肉山羊标签。 EID 按钮的尺寸比其他版本小得多,因此必须使用插入件以避免标签卡在标签器中。贴标签时使用消毒剂以及在贴上标签后将标签组件拉开并旋转也非常重要。堪萨斯 4-H EID 标签每袋 20 个,最低订购量为一袋。欢迎各县与其他县共享一袋标签。最初发放标签的单位必须保留他们发送给其他单位的任何标签的记录,以及每个标签所贴家庭和动物的准确记录。鼓励在动物标签记录中包含第二种身份证明形式(羊搔痒症标签、耳凹口等)。单位首先使用最旧的标签也很重要,因为我们已经到了开始重复 5 位数的可视 4-H 标签编号的地步。一旦我们返回到物种的特定标签系列,旧标签将不再适用于州提名的动物。收集、合并堪萨斯州各推广单位收到的标签订单,并代表该州下达批量订单。首先订购牛肉标签,然后订购小型牲畜标签。标签在收到并处理后将分发给各个单位。堪萨斯州立大学青年牲畜计划并不维持标签的持续供应。传统上,牛肉标签在 1 月底可用,小型牲畜标签在 3 月 1 日之前准备好。过期标签 5 年及以上的堪萨斯 4-H EID 标签将不再被接受用于州提名的动物。制造日期应列在每袋标签的标签底部。2020 年之前发放的标签不适用于将被州提名参加堪萨斯州博览会 Grand Drive 和/或 KJLS 的牲畜项目。这包括所有物种的可视标签编号 45200-60000。但是,2019 年及之前剩余的标签仍可用于仅限县博览会的动物。 *仅 840 个标签可用于将被州提名的牛和猪。作为拨款资助的 RFID 技术试点计划的一部分发放的原始 982 个 EID 标签将不被这两个物种接受。记录保存职责 单位内负责管理牲畜项目标签的推广专业人员负责维护使用标签的动物的标签记录。堪萨斯 4-H EID 标签(官方 (840) 标签)的记录需要保存五 (5) 年。
抽象分子标记是识别遗传疾病的关键工具,可以进行精确的诊断,风险评估和个性化治疗方法。它们分为各种类别,包括单核苷酸多态性(SNP),短串联重复序列(STR)和限制性片段长度多态性(RFLP),每个多态性(RFLP)在遗传诊断中起着不同的作用。SNP被广泛用于全基因组关联研究(GWAS),以鉴定出对复杂疾病的遗传易感性,而STR在诊断诸如亨廷顿氏病等疾病中很有价值。rflps虽然今天不常用,但在特定的诊断环境中仍然很重要。分子标记物的应用跨越了广泛的遗传疾病,从囊性纤维化(CF)等复杂疾病(如遗传性乳腺癌和卵巢癌综合征和脆弱的X综合征)。这些标记能够早期检测和有针对性的干预措施,从而改善了患者的预后。然而,一些挑战阻碍了他们的广泛采用,包括难以解释遗传数据,有限的遗传筛查以及与隐私和遗传歧视有关的道德问题。将分子标记物用于遗传筛查的未来方向涉及整合先进的技术,例如下一代测序以及将分子数据与其他OMIC方法结合在一起,以提供对遗传疾病的更全面的理解。应对数据解释,可访问性和道德问题的挑战对于扩大分子标记在临床实践中的效用至关重要。分子标记技术的进步及其在检测特定遗传疾病中的应用有望提高诊断准确性和个性化治疗策略。但是,确保这些技术是可以访问的,并且在道德上实施将是其成功转变医疗保健的关键。分子标记和遗传筛查技术的持续发展表明,早期诊断和个性化药物成为遗传疾病的标准护理的未来。关键词:分子标记,遗传疾病,SNP,遗传筛查,个性化医学
我们报道了一种通过原子层沉积 ALD 在长宽比超过 35:1 的非常窄的孔内共形生产薄的、完全连续且高导电性的铜膜的方法。纯铜薄膜由新型铜 I 脒基前体、铜 IN、N -二仲丁基乙脒和分子氢作为还原剂生长。该铜前体在汽化过程中为液态,因为其熔点 77°C 低于其汽化温度 90-120°C 。因此,前体蒸汽的传输非常可重复且可控。碳和氧杂质低于 1 原子%。每个循环的生长在 SiO 2 或 Si 3 N 4 表面上为 1.5-2 Å/循环,但在金属 Ru、Cu 和 Co 表面上仅为 0.1-0.5 Å/循环。在氧化物表面,铜原子形成孤立的铜晶体,经过更多沉积循环后合并为粗糙的多晶膜。在 Ru 和 Co 金属表面上,ALD Cu 密集成核,形成光滑且附着力强的薄膜,即使对于薄至 4 个原子层的薄膜,这些薄膜也是连续的。在 2 nm Ru 基底上沉积 4 nm Cu 时,薄层电阻低于 50 / ,这足以制作用于电镀 Cu 互连线的种子层。© 2006 电化学学会。DOI:10.1149/1.2338632 保留所有权利。
Hermant 就铜矿勘探技术的下一个发展方向进行了深入的演讲。他强调了 Fleet' Space Technologies 的使命,即利用太空探索技术和人工智能加速发现,解决加快铜矿发现的迫切需求,以支持全球能源转型。他阐述了结合卫星连接、3D 多物理场和人工智能来提高勘探效率的潜力。他评论说:“通过结合太空和人工智能技术,可以从根本上更快地学习以关闭勘探团队和测试之间的循环。”这种创新方法旨在通过更快地发现高质量矿藏来改变行业。Fleet Space Technologies 首席产品官
照片:回收了Kincora新的Nevertire South项目的钻石核心。最近对先前核心的支持Newcrest的观点,即“钻探已经确定了岩性,改变和静脉,与与Cadia-Ridgeway和Goonumbla Porphyry cu-au矿床相似的环境一致” 1” 1” 1,以及我们对最佳地理上的较高级别的高优先级别的观点以及我们对最佳范围内的目标的看法,该目标是远远优先的一步,可能的存款 * 3支持Newcrest的观点,即“钻探已经确定了岩性,改变和静脉,与与Cadia-Ridgeway和Goonumbla Porphyry cu-au矿床相似的环境一致” 1” 1” 1,以及我们对最佳地理上的较高级别的高优先级别的观点以及我们对最佳范围内的目标的看法,该目标是远远优先的一步,可能的存款 * 3
还进行了使用高灵敏度技术和横截面的附加参考 X 射线检查,以更深入地确认焊接质量,直至微观结构水平。该项目还根据所应用的 NDT 技术的 EN 标准评估物理参数及其评估。特别重要的是了解局部信噪比以及 POD(检测概率)设置的影响。检测概率曲线原则上是根据 MIL 1823 可靠性指南确定的,该指南是为确定美国军方燃气涡轮发动机的完整性而制定的。需要扩展铜摩擦搅拌和电子束焊接中更复杂的不连续情况,这对焊接和 NDT 技术来说都是一个挑战。
在 DLW 技术中,值得注意的是直接激光金属化 (DLM) 技术,该技术专注于精确选择和合成前体,用一定强度和脉冲持续时间的激光照射,导致化学反应并在表面形成金属微图案 [23,37,38]。例如,研究表明,DLM 可成功用于在玻璃和陶瓷表面制造铜、镍、金和其他金属基微图案 [39,40,41]。由于许多纳米材料的前体制备可能很复杂且耗时,DLM 方法的进一步发展导致找到了廉价、环保且易于合成的新型前体。研究表明,深共熔溶剂 (DES) 可能取代人们所寻求的前体,这种溶剂此前已被证明是分析化学中的有效萃取剂 [42] 以及电化学金属化的介质 [43]。
1 同德胜大学机械、生物力学和多物理应用超材料研究组,胡志明市 758307,越南 2 同德胜大学应用科学学院,胡志明市 758307,越南 3 伊斯兰阿扎德大学亚苏伊分会青年研究员与精英俱乐部,亚苏伊 7591493686,伊朗;alal171366244@gmail.com 4 里昂 ECAM,里昂大学 ECAM 实验室,69005 里昂,法国;ahmad.hajjar@ecam.fr 5 萨坦本阿卜杜勒阿齐兹王子大学瓦迪阿德瓦瑟工程学院机械工程系,瓦迪阿德瓦瑟 11991,沙特阿拉伯; oubeytaha@hotmail.com 6 喀土穆大学工程学院机械工程系,喀土穆 11111,苏丹 7 托木斯克国立大学对流传热传质实验室,列宁大街 36 号,634050 托木斯克,俄罗斯;sheremet@math.tsu.ru 8 克尔曼 Shahid Bahonar 大学工程学院机械工程系,克尔曼 7616913439,伊朗;mohsensp@kth.se 9 瑞典皇家理工学院材料科学与工程系,斯德哥尔摩 SE-100 44,瑞典 * 通信地址:mohammad.ghalambaz@tdtu.edu.vn (MG);chrihs@kth.se (CH-S.)