。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年3月19日发布。 https://doi.org/10.1101/2023.05.11.539887 doi:Biorxiv Preprint
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月22日发布。 https://doi.org/10.1101/2024.02.20.581294 doi:Biorxiv Preprint
dyrk1b最近被认为是肿瘤学,代谢综合征和非酒精性脂肪肝病的关键治疗靶标。然而,由于缺乏结构信息,对DYRK1B的选择性抑制剂的发展受到限制。在这项研究中,我们采用了重组蛋白的产生,活性测定和结晶来阐明DYRK1B的结构。我们在与已知抑制剂AZ191中呈现DyRK1b的晶体结构。为了进行比较分析,我们提供了与AZ191复合物中密切相关的DYRK1A激酶的晶体结构。我们的分析确定了DYRK1B的铰链区域中一个独特的结合位点,这对于选择性抑制剂的设计至关重要。量子机械计算揭示了DyRK1b和DyRK1A之间催化赖氨酸的可及性的显着差异,这表明有选择性抑制剂设计的潜在途径。这些发现标志着寻求特定DYRK1B抑制剂的显着进步,与针对DYRK1B和DYRK1A的当前双特异性抑制剂相比,可能具有集中功效。
摘要:过去已经研究了细菌的生长和行为,但是尽管对无数过程的影响,包括生物膜形成,但对船员健康的影响很少,但几乎没有将重点引向细胞大小。分析了在国际空间站(ISS)上培养在不同材料和媒体上培养的铜绿假单胞菌的特征上清液等分试样,作为太空生物膜项目的一部分。在该实验中,铜绿假单胞菌是在微重力的(与地球对照匹配的)中生长的,在改良的人工尿液培养基(Maumg-high Pi)或补充了KNO 3的LB Lennox中,并评估了其在六种不同材料上的生物膜形成。在孵育一二,两天和三天后,ISS船员通过固定在多聚甲醛中终止了实验的子集,并在此处介绍了上清液的等分试样进行浮游细胞尺寸研究。通过在油浸入下的相对造影显微镜,moticam 10+数码相机和斐济图像分析程序下使用相对造影显微镜,获得了飞行后的测量。统计比较,以确定使用Kruskal – Wallis和Dunn检验的哪些治疗方法在细胞尺寸上产生了显着差异。在LBK和Maumg-High Pi中,培养物中存在的材料存在统计学上的显着差异。与此一起,数据还按重力条件,培养基和孵育天数分组。总而言之,在微重力上生长的培养物上观察到较小的细胞,并且细胞大小随孵育时间的函数和培养物的生长而变化。在微重力中培养的浮游细胞的比较显示细胞长度降低(根据材料,从4%到10%)和直径(根据材料,根据材料的1%到10%)就其匹配的地球对照组而言,需要注意的是,在给定时间,培养物可能在其生长曲线上可能在不同的生长曲线上处于不同的位置。我们在此处描述了这些变化,以及在机组人员健康和潜在应用方面对人类太空旅行的可能影响。
1 Broer,S。&Gauthier-Coles,G。哺乳动物细胞中的氨基酸稳态,重点是氨基酸转运。J Nutr 152,16-28(2022)。https://doi.org:10.1093/jn/nxab342 2 Blau,N.,Duran,M.,Gibson,K。M.&Dionisi-Vici,C。遗传代谢疾病的诊断,治疗和随访的医生指南。3-141(Springer-Verlag,2014年)。 3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加? 营养12(2020)。 https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。3-141(Springer-Verlag,2014年)。3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加?营养12(2020)。https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.3390/nu12103087 4 White,P。J.等。胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。mol Metab,101261(2021)。https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M.Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。6 Seow,H。F.等。hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。nat Genet 36,1003-1007(2004)。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。抑制中性氨基酸转运以治疗苯酮尿症。JCI Insight 3(2018)。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。遗传代谢疾病杂志N/A(2022)。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。缺乏中性氨基酸转运蛋白B(0)AT1(SLC6A19)的小鼠的FGF21和GLP-1水平升高并改善了血糖控制。MOL METAB 4,406-417(2015)。 https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140MOL METAB 4,406-417(2015)。https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。前药11,140(2020)。https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.3389/fphar.2020.00140
一般数据保护法规(GDPR)已成为一项具有里程碑意义的立法,重塑了数据隐私和网络安全的全球格局。在2018年5月执行,GDPR对全球组织产生了深远的影响,促使对网络安全实践进行了重新评估,以确保遵守严格的数据保护标准。本文对GDPR对网络安全的影响进行了全面综述,并特别强调了美国(美国)和欧洲采用的对比方法和实践。GDPR介绍了一组旨在保护个人的权利和隐私的强大原则,强调需要透明度,问责制和主动措施来保护个人数据。其域外范围将其影响扩大到欧洲边界之外,迫使全球业务遵守其法规。本文探讨了GDPR合规性带来的挑战和机遇,研究了美国和欧洲的组织如何导航不断发展的网络安全景观。在美国,在美国,在整个州的隐私法规都有不同的情况下,GDPR促使讨论有关联邦隐私法的制定。考虑到州和联邦法规之间在塑造网络安全策略中的相互作用,审查研究了美国企业采用的不同方法。相反,欧洲实践反映了对GDPR的积极反应,因为组织已经接受了规定中嵌入的原则以加强网络安全框架。本文调查了欧洲网络安全标准的发展,强调了成功的策略和潜在的改进领域。通过综合大西洋两岸的经验,这项综述有助于更深入地了解GDPR对网络安全的影响。它阐明了数据保护的不断发展的动态,为寻求增强其网络安全弹性的组织提供了见解,面对迅速变化的监管景观。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 6 月 10 日发布。;https://doi.org/10.1101/2023.06.09.544431 doi:bioRxiv preprint
。CC-BY-NC-ND 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 6 月 2 日发布。;https://doi.org/10.1101/2022.08.12.503731 doi:bioRxiv 预印本
摘要B -LACTAM抗生素已成功使用了数十年来与易感假单胞菌的铜绿假单胞菌作斗争,该抗生素具有众所周知的渗透外膜(OM)的臭名昭著。然而,对于完整细菌中B- lactams和B-乳糖酰酶抑制剂的青霉素结合蛋白(PBP)的目标位点渗透和共价结合缺乏数据。我们旨在确定完整和裂解细胞中PBP结合的时间过程,并估计目标位点penetra和PBP访问铜绿假单胞菌PAO1中的15种化合物。所有B-乳酰胺(在2 MIC处)在裂解细菌中有相当大的pbps 1至4。然而,完整细菌中的PBP结合大大减弱,但对于快速穿透B-乳酰胺而言,PBP结合的速度很慢。imipenem产生1.5 6 0.11 log 10在1H时杀死,而其他所有药物的杀戮为0.5 log 10。相对于imipenem,净插入率和PBP访问的速率为;多甲苯和美洲膜烯的慢2倍,阿维巴氏菌的7.6倍,头孢嗪速14倍,头孢菌素为45倍,硫酸盐为50倍,Ertapenem为72倍,; 249-用于哌拉西林和aztreonam的折叠,tazobactam的358倍; 547倍碳苯甲林和提卡林蛋白,头孢辛蛋白的1,019倍。在2 MIC时,PBP5/6结合的程度高度相关(r 2 = 0.96)与净插入率和PBP访问的速率,这表明PBP5/6的净率是诱饵靶标的,应通过缓慢穿透,未来的B -LACTACTAMS来避免。对完整和裂解的铜绿假单胞菌中PBP结合的时间过程的第一次全面评估解释了为什么只有imipenem迅速杀死。完整细菌中发达的新型共价结合分析构成了所有表达的恢复机制。
摘要:慢性铜绿假单胞菌感染的特征是生物膜形成,这是铜绿假单胞菌的主要毒力因子,也是广泛耐药性的原因。氟喹诺酮类药物是有效的抗生素,但与严重的副作用有关。两种细胞外铜绿假单胞菌特异性凝集素 LecA 和 LecB 是关键的结构生物膜成分,可用于靶向药物输送。在这项研究中,几种氟喹诺酮类药物通过可裂解的肽接头与凝集素探针结合,产生凝集素靶向前药。从机制上讲,这些结合物因此在全身分布中保持无毒,并且只有在感染部位积聚后才会被激活以杀死细菌。合成的前药在宿主血浆和肝脏代谢存在下被证明是稳定的,但在体外,在铜绿假单胞菌存在下,会以自毁方式迅速释放抗生素货物。此外,该前药在体外表现出良好的吸收、分布、代谢和消除(ADME)特性和降低的毒性,从而建立了第一个针对铜绿假单胞菌的凝集素靶向抗生素前药。■ 介绍
