本研究系统地分析和优化了纯铜电子束熔炼工艺。结果表明,为了可靠制造,应优化预热温度以避免孔隙率和部件变形。电子束应完全聚焦,以防止收缩空隙(与负散焦相关)和材料飞溅(与正散焦相关)。较低的网格间距(例如 100µm)可使表面更光滑,从而提高密度可靠性,而较高的网格间距可达到更长的悬垂。还采用了合适的起始轮廓策略来减轻边界孔隙率、降低侧面粗糙度并提高几何精度。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
透明导电金属氧化物已成为研究的主题,这要归功于它们的独特物理特性以及潜在的微观和纳米电子设备和显示单元的应用。这些材料的基本实际应用是基于明显的特异性抗性和高可见的透射率。透明的金属氧化物尤其包括诸如碳锡氧化物,氧化锌,氧化镉等化合物。氧化锌半导体作为压电和光纤材料具有实用的应用潜力,可作为功能性气体传感器组件,表面声设备,透明电极和太阳能电池[1-4]。高光带隙值(〜3。3 eV在室温下)和激子结合能(约60 meV)允许将ZnO作为创建下一代紫外线光电设备和彩色显示单元的磷光器的材料。对于上面提到的许多应用,例如,通过合金来控制ZnO薄膜结构的物理参数的不稳定性是必不可少的。在这种情况下,铜合金添加剂更有效,因为铜是半导体中迅速扩散的杂质,它会导致结晶结构和物理性能的修改,例如,表面状态能量参数以及光学特性[5-7]。后者提供了有关光学主动故障的能量结构的其他信息,这具有很高的实际兴趣。这项研究的目的是研究未扎的ZnO铜掺杂(ZnO:Cu)薄膜的光光谱的行为。
电流[12–14]。此外,铜铁矿 PdCoO 2 和 PtCoO 2 被证明是导电性最强的氧化物。例如,Kushwaha 等人 [15] 在室温下测定了 PtCoO 2 的电阻率ρ低至 2.1 µΩ cm,这是迄今为止报道的氧化物的最低值。此外,在低温下,其电导率接近 Cu、Ag 和 Au 等金属的电导率。[15,16] 这些铜铁矿由二维 Pd 和 Pt 片组成,通过八面体配位的 CoO 2 连接。由于这种结构,它们的电导率具有强烈的各向异性,并且在 (ab) 平面内最高。此外,Kitamura 等人[17] 通过从头计算预测了 PtCoO 2 中存在较大的本征自旋霍尔效应,这使其成为一种有趣的材料,可用于制造铁磁赛道等自旋电子器件,在这些器件中,自旋霍尔效应可用于产生自旋电流。[18–22]
太阳能电池是一种光伏装置,它通过吸收半导体中的光生载流子,将太阳能直接转化为电流。太阳能电池主要涉及三个过程:吸收光子产生电荷载流子、分离载流子和收集载流子。半导体材料通常吸收能量大于其带隙的光子。被吸收的光子激发电子从吸收材料中的价带移动到导带,从而产生电子-空穴对。产生的电荷载流子对要么重新组合,要么分离然后收集。吸收的光子取决于吸收材料的厚度和吸收系数。太阳能电池的关键部分是pn结的形成,pn结由两种连接在一起的半导体材料组成,其中一种是n型掺杂的,另一种是p型掺杂的。在CIGS太阳能电池中,各种不同的半导体材料用于形成pn结,因此这种结构称为异质结。使用异质结可以为电池提供宽带隙窗口层,从而减少表面复合。价带和导带
如果此消息最终未被文档的正确内容所取代,则您的 PDF 查看器可能无法显示此类文档。您可以通过访问 http://www.adobe.com/go/reader_download 升级到适用于 Windows®、Mac 或 Linux® 的 Adobe Reader 的最新版本。如需有关 Adobe Reader 的更多帮助,请访问 http://www.adobe.com/go/acrreader。Windows 是 Microsoft Corporation 在美国和/或其他国家/地区的注册商标或商标。Mac 是 Apple Inc. 在美国和其他国家/地区的注册商标。Linux 是 Linus Torvalds 在美国和其他国家/地区的注册商标。
为中枢神经系统开发治疗性干预措施是具有挑战性的,因为这些疾病的治疗重点是解决这些疾病的症状,并且不会阻止其进展。5,6,可用治疗的第一线可能会产生疾病症状的侧面作用,并且并非所有患者都对具有相同临床诊断的特定疗法做出反应。7大脑中的低浓度铜与帕金森氏病8和多发性硬化症有关。9个Menkes综合征是由ATP7A基因缺陷引起的。缺陷使身体很难在整个身体中正确分配铜。因此,人体的大脑和其他部位没有得到足够的铜,并且在小肠和肾脏中积聚。因此,建议将这种金属的供应作为减少神经元恶化并防止疾病进展的替代方法。10,11 Cooper在人类细胞中显示出重要的生物学关系,因为它是不同人体器官的必不可少的微量营养素,它们具有高代谢活性,例如肝脏,脑,肾脏和心脏。12,13,但此痕量元素也会影响阿尔茨海默氏病的外观和/或进展。因此,补充
用24 kW的Trudisk激光器进行了实验,具有1030 nm波长和双核纤维,以及适用于24 kW的扫描仪光纤(此光学的特朗普名称为PFO 33(KF023)(KF023),[Pricking et al(2022)])。BrightlineWeld技术允许在100 µm内芯和400 µm外芯之间自由拆分功率,从而稳定钥匙孔并最大程度地减少溅射形成[Speker等人(2018)]。在此提出的实验中,使用了70%的核心与环比率,从而产生平滑的焊缝。放大倍率为3.2,内芯的焦点直径为320 µm,而外芯的焦点直径为1285 µm,相对于内芯,雷莱基长度为6 mm。使用此设置,工作场也很大,工作距离也很大,最大程度地减少了溅射对保护玻璃的影响,并且内核的斑点大小是焊接的典型特征。
摘要 — 这项工作提出了一种新方法,将微/纳米级多孔铜反蛋白石 (CIO) 融入 Sn 基焊料微凸块中,与低温 CMOS 后端 (BEOL) 工艺兼容。微孔结构可使临界孔径小至 5 μm 甚至小至 200 nm(基于凸块尺寸)。这种多孔辅助键合技术具有巨大潜力,可提高细间距 Cu/Sn 键合界面的热导率和机械可靠性。在这项工作中,我们已成功制造并展示了直径为 100 μm 的 Cu 凸块上孔径为 3 μm 的基于 CIO 的微孔结构,实现了 3 μm - 5 μm 的目标厚度,这通过聚焦离子束显微镜 (FIB) 分析得到证实。Cu-CIO 和 Sn 焊料键合界面的微观结构和元素映射表明,熔融焊料可以渗透这些铜 CIO 微孔结构。这样,微凸块就可以通过毛细力进行自对准,形成坚固的机械相互扩散键。此外,采用简化的有限元法 (FEM) 表明,基于 CIO 的微/纳米多孔铜基质结构有可能将 Cu/Sn 键合层的等效热导率提高 2-3 倍。
Illés Balázs 1),2) ,Olivér Krammer 1),2) ,Tamás Hurtony 1) ,Karel Dusek 2) ,David Busek 2) ,Agata