摘要 — 这项工作提出了一种新方法,将微/纳米级多孔铜反蛋白石 (CIO) 融入 Sn 基焊料微凸块中,与低温 CMOS 后端 (BEOL) 工艺兼容。微孔结构可使临界孔径小至 5 μm 甚至小至 200 nm(基于凸块尺寸)。这种多孔辅助键合技术具有巨大潜力,可提高细间距 Cu/Sn 键合界面的热导率和机械可靠性。在这项工作中,我们已成功制造并展示了直径为 100 μm 的 Cu 凸块上孔径为 3 μm 的基于 CIO 的微孔结构,实现了 3 μm - 5 μm 的目标厚度,这通过聚焦离子束显微镜 (FIB) 分析得到证实。Cu-CIO 和 Sn 焊料键合界面的微观结构和元素映射表明,熔融焊料可以渗透这些铜 CIO 微孔结构。这样,微凸块就可以通过毛细力进行自对准,形成坚固的机械相互扩散键。此外,采用简化的有限元法 (FEM) 表明,基于 CIO 的微/纳米多孔铜基质结构有可能将 Cu/Sn 键合层的等效热导率提高 2-3 倍。
图 2:典型球/月牙互连的简化表示 自动引线键合机于 20 世纪 80 年代初推出。当时,大多数互连都是使用铝线制作的。随着对高可靠性需求的增加,金线变得更加普遍。随着封装密度的增加,引线互连键合间距减小。细间距的初始解决方案是楔形键合,因为楔形工具设计允许将引线紧密键合(并排)。 细间距互连 在更小的空间内封装更多元件的需求导致 ASIC 设计变得更加密集。人们曾认为,互连细间距封装的最佳方法是通过楔形键合。在 20 世纪 90 年代后期,典型的键合间距从约 110µm 减小到约 90µm。在此期间,平均楔形工具尖端大约是球键合毛细管工具尖端宽度的三分之一。毛细管材料缺乏支持细间距工艺的稳健性。从那时起,改进的材料使细间距设计成为可能,其中尖端尺寸小于 70µm 的情况并不罕见。更小的特征、更高的密度和更多的 I/O 需要细间距。在当今的细间距环境中,任何使用楔形键合机键合的设备都可以使用球焊设备更快地键合。图 3 和图 4 描绘了使用 1.0 mil 导线通过球焊互连的 55µm 细间距架构。
图使用Cu-ag纳米颗粒的烧结过程的10示意图。(a)烧结前的关节; (b)在烧结过程中加入纳米颗粒和Cu底物之间的界面; (c)在烧结过程中加入纳米颗粒; (d)烧结后的关节; (e)两个相邻的Cu-ag核壳纳米颗粒的初始表面; (f)在Cu纳米颗粒表面上首映的微小的Ag纳米颗粒; (g)Cu-ag核壳纳米颗粒与Ag Neck
电话:707-628-5107 电子邮件:jbahena@veeco.com 摘要 5G、物联网和其他全球技术趋势的需求,加上缩小工艺节点成本的增加,已导致向更集成的封装要求转变。扇出晶圆级封装、2.5D/3D IC 封装和异构集成等先进封装技术的出现,为更小尺寸、更高功能和带宽带来了潜力。为了实现这些技术,通常需要对器件晶圆进行背面处理或减薄。这就要求使用临时粘合材料将器件晶圆粘附到刚性载体晶圆上,以便在处理和加工过程中提供机械支撑。释放载体后,必须彻底清除器件晶圆上的临时粘合材料。许多此类粘合剂都暴露在高功率激光或高温下,这使得清除更具挑战性。临时键合材料去除的亚微米级颗粒清洁要求也达到了通常为前端处理保留的标准。这在 3D 工艺中尤其重要,例如混合键合,其中特征和间距尺寸接近 < 1 µm,清洁不充分会导致后续键合工艺失败。因此,必须仔细考虑所有处理步骤以满足严格的颗粒要求。这项工作研究了硅晶片上涂层和烘烤的临时键合材料的去除,重点是获得最佳颗粒结果的加工条件。通过进行试样级研究和测量表面特性,在烧杯级评估了几种化学物质。根据这些发现,使用可定制的单晶圆加工工具对 300 毫米晶圆进行了研究。关键词临时键合材料、湿法清洗、晶圆级封装、单晶圆加工。I.简介 虽然晶体管和节点缩放一直在不断进步,但相关的成本和复杂性要求采用其他途径来提高性能。最突出的是,先进封装中的 2.5D/3D 集成通过将不同尺寸和材料的不同组件集成到单个设备中,显示出巨大的前景 [1]。由于许多当前的集成工艺流程都需要对设备晶圆进行背面处理或减薄,因此使用临时键合和脱键合 (TBDB) 系统已被证明是必要的多种类型的集成技术已经得到开发,例如扇出型晶圆级封装 (FOWLP)、2.5D 中介层、3D 硅通孔 (TSV) 和堆叠封装 (PoP),具有高集成度、低功耗、小型化和高可靠性等预期优势 [1-3]。