Cognet, M.、Cambedouzou, J.、Madhavi, S.、Carboni, M. 和 Meyer, D. (2020)。通过选择性沉淀作为有价值的多孔材料,有针对性地去除锂离子电池废液中的铝和铜。材料快报,268,127564‑。https://dx.doi.org/10.1016/j.matlet.2020.127564
摘要:近年来,复合材料在电子工业和其他制造业中占据了主导地位。因此,铝碳化硅 (AlSiC) 等复合材料已被用于生产散热器,主要用于管理电子设备中的热量。然而,这种复合材料的热疲劳是维持设备可靠性的主要挑战。本文研究了 AlSiC 复合材料的热机械效应。有限元法 (FEM) 用于分析基于 10 – 50% 成分之间的颗粒夹杂物的复合材料。本研究中使用的热曲线 (-40 o C 至 85 o C) 已在商业上用于消费产品。获得并评估了基于应力和应变参数的复合材料的疲劳寿命。本研究的结果表明,变形、应变和应力随着颗粒夹杂物百分比的增加而减小。此外,复合材料的疲劳寿命表明,夹杂物越多,材料的可靠性就越高。这项研究表明,与其他夹杂物相比,50% 颗粒夹杂物的疲劳失效循环数 (5.09E+04) 更高。而根据这项研究,10% 夹杂物的疲劳寿命最短 (4.39E+04)。DOI:https://dx.doi.org/10.4314/jasem.v24i6.3 版权:版权所有 © 2020 Ekpu。这是一篇开放获取的文章,根据知识共享署名许可 (CCL) 分发,允许无限制地使用、分发和复制,只要正确引用原始作品。日期:收到:2020 年 4 月 11 日;修订:2020 年 5 月 15 日;接受:2020 年 6 月 5 日关键词:复合材料;温度曲线;碳化硅;热疲劳为了改善电子设备的热管理,必须彻底改变最初用于管理热量的传统材料。铜和铝是用于热管理的最常用材料(Ekpu 等人,2011 年)。然而,复合材料的使用大大增强了电子应用中的热管理。因此,研究复合材料的热机械行为确实是必要的。研究人员(如 Babalola 等人,2018 年;Xiao-min 等人,2012 年;Wang 等人,2009 年)研究了复合材料,以确定其电气、物理和机械性能。Babalola 等人(2018 年)介绍了一项关于搅拌铸造法生产的 AlSiC 复合材料的电气和机械性能的研究。在他们的研究中,将获得的实验结果注入人工神经网络 (ANN) 以预测复合材料的性能。这项工作的本质旨在降低进行实验的高成本及其相关挑战。Kumar 等人(2019 年),研究了电火花加工 (EDM) 加工的铝基复合材料表面的完整性。他们的研究表明,纯 AlSiC 复合材料的表面缺陷小于添加了 B 4 C 颗粒的 AlSiC 复合材料。Hassan 和 Hussen (2017) 研究了
美国铝业就业:对国家至关重要 铝是美国制造业的独特元素,支持航空航天、交通运输、建筑、国防、包装、基础设施和美国经济的许多其他领域。铝被指定为关键矿物,并被商务部和国防部认定为对国家安全“至关重要”。该行业支持近 700,000 个美国就业岗位,包括数万名生产、制造和回收金属的男女。铝行业生产许多在公共卫生危机期间必不可少的产品,包括医疗用品、建筑材料、运输设备以及食品和饮料包装的投入。地方、州和联邦政府必须确保铝行业运营和员工被指定为“必不可少”的,并在当前的 COVID-19 大流行期间不受任何“就地避难”命令的约束。铝工人和企业的紧急行动
研究人员开始寻找能够满足航空航天工业所有要求的新材料。当用单一材料几乎不可能实现这一点时,复合材料就得到了研究,并且在这一领域取得了长足的发展。飞机制造中使用了许多元素,但铝是最受欢迎的,因为它密度低、铸造性好、强度高、耐腐蚀、疲劳强度好。然而,它的强度和刚度限制了它的可用性。为了解决这个问题,铝与各种元素结合在一起。铝金属基复合材料就是一个例子。铝金属基复合材料因其高比模量和良好的机械和热性能而成为飞机应用中的首选。本综述提供了有关铝金属基复合材料在航空航天工业中的使用的信息。
铝和铝合金在各种顶级工业领域有着广泛的应用。从航空航天工业发展开始(自19世纪以来),铝合金因其重量轻、机械强度高、耐腐蚀性好等特点,开始用于制造飞行器部件(例如飞艇)。自20世纪初以来,铝也被用于制造飞机部件,例如:发动机壳体、气缸体和航空发动机的其他部件[1-3]。在同一时期,铝合金首次进行了热处理,这在当时是一项了不起的技术进步,后来导致铝在航空航天工程中的大量使用,铝合金成为这些顶级工业中使用最广泛的材料。铝合金按主要合金元素分类,包括 8 个系列的合金,如表所示。1,其中提到它们是否可热处理,以及机械强度 [4]。1xxx、3xxx 和 5xxx 系列的合金不可热处理。2xxx、6xxx 和 7xxx 系列的合金可热处理。4xxx 系列铝合金
对冶金和材料科学领域的高温耐铝,水透明和生物甲状腺素的比较分析是一项有价值的研究。这些冶金过程被用来从各种来源提取金属,了解它们的差异和优势对于有效的金属恢复和可持续资源管理至关重要。从矿石,浓缩物和废料中提取和回收金属是冶金工业的基本过程。在可用的各种方法中,高分测铝,水透明和生物 - 羟基铝作为独特且广泛使用的方法。高温铝过程也称为干法,水均能铝过程称为湿法方法,而生物 - 氢铝过程称为生物介绍过程。干燥,湿和生物涉及方法之间的比较分析旨在探索,评估和对比这些方法,在电子废物(电子废物)中提取金属的背景下,阐明了它们的原理,应用和环境影响。电子废物或电子废物在全球范围内越来越多。电子垃圾包含无数有价值的金属,包括但不限于黄金,白银,铜和钯,以及危险物质,使其适当的管理至关重要。提取方法的选择在确定金属恢复,经济生存能力和环境影响的效率方面起着关键作用。这种比较分析的主要目的是提供对高分测铝,水透明和生物 - 氢铝的全面理解,因为它们与从电子废物中提取金属有关。通过检查这三种方法的原理,过程,选择性,能源需求,环境影响以及经济考虑,旨在将决策者,研究人员和行业专业人员告知可持续电子垃圾回收的最佳实践。
摘要。地球非常重要的热带山区雨林中的动态速率是这些森林对全球变化的反应的核心部分,但是它们与环境渐变的关系知之甚少。我们在成熟的森林工作,在哥斯达黎加的Talamanca Cordillera上的440 - 2810 M ASL高度梯度上工作,在2012年至2019年期间,五个0.25-HA永久性样品地块的五个次要次数为29 HA。我们确定了乳房高度直径≥10cm的个体的死亡率和招聘率以及基础面积(G)增量。我们的主要假设是,支架动态速率随高度(因此温度)而降低;我们还测试了假设,即随着情节社区加权平均特异性叶面积(CWM SLA)而增加的速率,并随着CWM木材特异性重力(WSG)而降低。我们使用通用添加剂模型开发了回归来检验我们的假设。死亡率和招聘率随海拔高度降低,尽管强烈的非线性死亡率趋势可能是由极端的天气和温度驱动的。此外,招聘率的最佳模型还包括与具有负相关关系的CWM SLA。总的基础面积增量δg毛,这是在研究期间幸存的树木的年度基础面积增量,与海拔高度有驼峰形的关系,可能与高海拔森林的低CWM WSG有关。δG总体确实与CWM WSG负相关。δg净为负。CWM特征应测量以提高理解。然而,在具有负相关关系的CWM WSG的模型中,由于山地森林的死亡率较低,净基础面积生长(δg净,初始图和最终地块基础面积之间的年化差异)与高度呈正相关。雨林支架在这个长高度梯度上的动态模式超出了对温度的直接反应,需要进一步的工作以改善森林对气候变化的反应。风暴和闪电对低海拔森林的影响以及山地fagaceae主导森林的潜在高弹性需要注意。在比较热带森林海拔样品时,应期望脱离>偏差,而不是普遍性。
通过含有高能量密度的废物的铜(II)(II)氧化物/石墨烯(CUO/GO)纳米复合材料生产。确定了纳米复合材料,例如CuO,铜(I)氧化物(Cu 2 O),Cuo-Go,Cu 2 O-Go对H 2生产效率的影响。用XRD和FTIR分析分析了Cuo,Cu 2 O,Cu-go,Cu 2 o的物理化学特性,例如其结构,形态和表面性能,用于H 2产生H 2的产生。用气相色谱 - 质谱法(GC-MS)测量 H 2(G)生产。在实验研究中,不断控制H 2产生的重要最佳反应条件,例如温度,压力和反应速率。对于最大H 2产生(4897 mmol),电子孔对和纳米复合材料直径的寿命应分别为350 ns和10 µm。阳离子(CD +2和Fe +3)阴离子(Cl -1和SO 4 -2)浓度应为0.01 mg/L和0.1 mg/L,而CuO/GO纳米复合材料中的Cu +2 persentage应在40 mg/L浓度的纳米复合浓度中为3%,在40 mg/L浓度下,在pH = 8.0 mg/l = 8.0,在ph 40 mg/l = 8.0。由于这些结果,Al的H IG -igh能量密度可提供高H 2的高生产,而Al +3消耗率低。最后,Al +3水反应导致零温室气体排放,而Al +3反应是放热的,并且氢氧化铝[AL(OH)3]可以转换为Al 2 O 3,可以回收Al +3。
如何在接下来的三天内变得清晰。作为组织者,我们与我们的合作伙伴(尤其是我们的两个理想赞助商德国铝业公司和欧洲铝业公司)以及我们强大的合作伙伴网络一起,利用这段时间在主题和概念上进一步发展铝业。人们越来越关注交流和知识转移。从今年开始,铝业大会将在展区中部举行。我们针对可持续发展和回收或增材制造和数字制造等未来主题创建了创新广场和演讲角等新形式。
摘要:可充电铝离子水系电池(AIAB)因其经济、丰富、环保和安全优势,正在成为大规模电池系统的新兴竞争者。然而,由于天然氧化物屏障的形成,金属铝的高容量仍未得到开发。通过用离子液体混合物处理铝金属来去除氧化物解决了这个问题,但这种处理过的铝(TAl)在影响全电池性能方面的作用尚不完全清楚。同时,在铝金属上涂覆的涂层的稳定性和兼容性在全电池装配线中的长期处理中仍未得到探索。在这里,我们在全电池 AIAB 的背景下探讨了 TAl 的上述两个方面。首先,一种高度稳定的正极材料 NMnHCF 被证明可以通过从单斜相可逆地转变为四方相来成功存储铝离子。据报道,其高能量密度超过了以前的等效报告。其次,揭示了电解质-TAl 配对的组合显着影响整体电池性能;其中电解质电导率会影响铝电镀/剥离过电位,进而决定整体电池性能。我们还证明,TAl 上的氯化涂层在环境大气下至少可稳定 40 小时,并可防止电池制造和电化学循环过程中铝金属块再次氧化。