使用高速撞击点火测试系统研究脆性铝热剂弹丸以 850 和 1200 米/秒的速度撞击惰性钢靶时的动态响应。弹丸包括固结的铝和三氧化二铋,由推进剂驱动的枪发射到配备高速成像诊断装置的捕集室中。弹丸穿过捕集室入口处的防爆屏,在穿透防爆屏时碎裂或在撞击钢靶之前保持完整。在所有情况下,弹丸在撞击时都会粉碎,反应碎片云会扩散到捕集室中。在较低的撞击速度下,碎裂弹丸和完整弹丸产生的火焰蔓延速度相似,均为 217 – 255 米/秒。在较高的撞击速度下,完整的射弹产生最慢的平均火焰蔓延速度,为 179 米/秒,因为碎片的反弹受到射弹长度的限制,并且由此产生的碎片场在径向高度集中。相比之下,破碎的射弹反弹成分散良好的碎片云,其火焰蔓延速度最高,为 353 米/秒。提出使用动能通量阈值来描述观察到的碎片分散和火焰蔓延速度的变化。使用计算流体力学代码开发了一种基于粒子燃烧时间的反应性模型,该模型结合了多相环境中的传热和粒子燃烧,以了解粒径如何影响火焰蔓延。模型结果显示,对于较小颗粒碎片,更快的反应性和增加的阻力抑制运动之间存在权衡。
能量材料(炸药、推进剂和烟火)是储存和释放大量化学能的物质。它们的制备方法是将固体氧化剂和燃料物理混合以产生复合能量材料(如火药),或通过创建同时包含氧化剂和燃料成分的分子(如 TNT)。复合材料在化学反应过程中释放的总能量(材料的能量密度)可能比单分子能量材料大得多,但复合材料释放能量的速度要慢得多(即功率较低)。(见 S&TR,2000 年 10 月,第 19-21 页。)实验室科学家已经开始解决能量密度和功率之间的这种权衡问题。“对于复合材料,粒子必须扩散得更远才能混合,这会减慢反应速度,”利弗莫尔材料化学家 Alex Gash 解释说。“虽然复合材料永远不会像炸药一样,但我们可以通过减小粒子来加快反应速度。”二十年前,科学家发现,将燃料和氧化剂的颗粒尺寸从微米缩小到纳米级,可将复合材料的反应性提高至少三个数量级。因此,提高反应性的努力集中在改进颗粒尺寸和其他减少粒子行进距离的方法上。利弗莫尔机械工程师 Kyle Sullivan 研究铝热剂,这是一种由金属燃料和金属氧化物制成的烟火复合材料,点燃后会迅速燃烧。由于铝热剂能提供集中的强热,它们传统上用于金属连接和切割等应用。Sullivan、Gash 和利弗莫尔研究员 Joshua Kuntz 通过在透明丙烯酸燃烧管中引发铝热反应并用高速摄像机记录由此产生的火焰传播,研究了燃料尺寸对反应性的影响。他们发现,当颗粒直径小于 3 微米时,减小颗粒尺寸的收益会迅速递减。结果改变了团队的注意力。他们不再专注于如何最佳地混合成分