技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
摘要 银线近年来已成为一种新型键合材料,但用户和现场工程师对其可靠性性能问题(包括故障机理和金属间化合物 (IMC) 形成)仍然存在分歧。本研究介绍了一种新型高纯度 96Ag-3Pd-1Au 合金(96% Ag)银线,并通过键合性和可靠性测试评估了其在铝键合焊盘上的键合性能。用于表征银线特性的可靠性测试包括高温储存寿命测试 (HTST) 和带温度和湿度的无偏高加速应力测试 (uHAST)。使用了两种具有不同氯离子含量的模具化合物。绿色化合物的氯离子含量低于 10 ppm,普通化合物的氯离子含量低于 27 ppm。对 HTST150'C 和 175'C 下 2000 小时的键合性、IMC 形成(Ag 2 Al、Ag 3 Al)和生长速率进行了测量,并根据 uHAST 的微观结构表征确定了可能的失效机制,其中由于原电池反应和 Cl- 离子在足够的水分和热能下发生重复的氧化和还原反应,而 Ag-Al IMC 和 Al 垫的还原反应导致形成微裂纹失效。
一般特性。铝及其合金具有独特的性能组合,使铝成为用途最广泛、最经济、最具吸引力的金属材料之一,从柔软、高延展性的包装箔到要求最严格的工程应用。铝合金作为结构金属的使用量仅次于钢。铝的密度只有 2.7 g/cm 3 ,大约是钢(7.83 g/cm 3 )的三分之一。一立方英尺的钢重约 490 磅,而一立方英尺的铝只有约 170 磅。如此轻的重量,加上一些铝合金的高强度(超过结构钢),使我们能够设计和建造坚固、轻便的结构,这种结构对任何运动物体都特别有利,例如航天器和飞机以及所有类型的陆地和水运工具。铝能抵抗导致钢生锈的那种逐渐氧化。铝的暴露表面与氧气结合形成一层厚度仅为几千万分之一英寸的惰性氧化铝膜,阻止进一步氧化。而且,与铁锈不同,氧化铝膜不会剥落,露出新的表面,从而进一步氧化。如果铝的保护层被刮伤,它会立即重新密封。薄薄的氧化层本身紧紧贴在金属上,无色透明——肉眼看不见。铁和钢的变色和剥落
1884 年华盛顿纪念碑竣工时,一个六磅重的铝盖被放置在纪念碑顶部,当时铝非常稀有,被认为是一种贵金属和新奇事物。然而,在不到 100 年的时间里,铝就成为继铁之后使用最广泛的金属。铝的迅速崛起是其金属及其合金的优良品质以及经济优势的结果。在自然界中,铝与其他元素(主要是氧和硅)紧密结合,存在于靠近地球表面的红色粘土状铝土矿中。在地壳中自然存在的 92 种元素中,铝是第三大元素,含量为 8%,仅次于氧(47%)和硅(28%)。然而,由于从天然状态中提取纯铝非常困难,直到 1807 年,英国的汉弗莱·戴维爵士才将其鉴定出来,并以铝矾石 (lumine) 命名,这是罗马人认为粘土中存在的金属的名称。戴维成功地生产出少量相对纯净的钾,但未能分离出铝。1825 年,丹麦的汉斯·奥斯特 (Hans Oersted) 最终通过加热钾汞合金和氯化铝生产出一小块铝。
在设计用于宽带模拟和数字的包装时,例如在串行通信链路或测试和测量应用中使用的包装,必须格外小心,以确保通过芯片上的芯片维持信号保真度到芯片外互连路径。芯片,例如电子测试仪器中使用的串行收发器或放大器,可能具有从DC到10s GHz的操作带宽,并且通常将其集成到50 O系统中。在包装和印刷电路板(PCB)上设计受控的阻抗传输线,这是一个相对简单的物质。但是,这两个领域之间的连接变得更加复杂。片上受控信号路径通常通过电线键连接路由到芯片上受控的阻抗路径。电线键连接由一端连接到IC上的键垫的电线组成,并在另一端连接到包装基板上的传输线(或直接在芯片板应用中的PCB上)。由于这些线键是电线的薄环,从接地平面上循环,它们几乎总是对电路感应,在信号路径中显示出比更高的特征阻抗的一部分。图。1。此简化的图形在陶瓷包装基板上显示了一个腔化的IC。模具位于陶瓷基板形成的腔体内,并粘合到铜模板上。粘结线从芯片控制的阻抗传输线连接到包装基板上的传输线。芯片厚度和陶瓷底物的厚度大致相等,因此
aldiğiPuanadi:.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
小芯片将 SOC 分解成复合部件,从而形成更小的芯片,然后可以将其封装在一起作为单个系统运行,从而提供潜在的优势,包括提高能源效率、缩短系统开发周期和降低成本。然而,在 AI 计算快速创新的推动下,需要封装方面的进步才能更快、更高效地将小芯片从研究转移到量产。
铟凸点阵列在量子计算中的应用越来越广泛,因为其对共面性和键合线厚度控制以及高质量电气互连的要求非常严格,红外焦平面阵列 (IR FPA) 显示出对更高分辨率的持续追求,这意味着更小的凸点、更高的密度和更大的表面积,最后,消费市场对 µLED 或 Micro LED 的需求越来越大,这意味着细间距铟互连需要更高的吞吐量。
