增材摩擦搅拌沉积 (AFSD) 提供了一种固态金属沉积方法,该方法不依赖于局部熔化和凝固,而是依赖于动能和塑性流动。在本研究中,AFSD 与结构光扫描、车削和铣削相结合,以生产金属部件,同时考虑混合制造工艺序列提出的独特要求。提供了两个演示,包括:1) 选择圆柱形构建板,以便在空心锥体的沉积和车削之间实现坐标系转移;2) 使用结构光扫描进行间歇沉积加工操作,以制造双面六边形圆柱几何体。2023 年制造工程师协会 (SME)。由 Elsevier Ltd. 出版。保留所有权利。
最重要的高科技工艺包括激光雕刻,用于在高压涡轮叶片上制造冷却空气孔,以及自适应铣削、拉削、摩擦焊接和精密电化学加工 (PECM)。增材制造工艺也越来越重要。其中之一是选择性激光熔化,它几乎不需要传统工具就可以生产或修复复杂的部件。增材工艺的其他优势包括显著更大的设计自由度、更短的生产时间、更快的创新周期、更轻的附加功能部件以及更低的开发成本。MTU 于 2013 年将增材工艺引入其运营,在发动机生产方面取得了突破:它是首批在工业规模上使用此类方法制造部件的公司之一。
功能多样 — 操作简便 软键使 POSITIP 能够提供多种功能,如归零或输入绝对或增量尺寸。所有软键的功能都用文字(您所在国家/地区的语言)或易于理解的符号标识。每种操作模式、工作步骤和屏幕显示都有个性化的屏幕操作说明,通常带有图形说明,只需按 HELP 键即可调用。INFO 功能为您提供额外的屏幕支持,如袖珍计算器、秒表、铣削切削数据计算器和用于在顶部滑块上进行车削设置的锥度计算器。MOD 键可调用用户参数,如半径/直径切换或两个轴的单独/总和显示。
摘要•近年来,增材制造已成为各个行业的常规过程,因此,越来越需要评估该技术及其协会材料的环境方面。在本文中,根据标准ISO 14044:2006研究了常规产品与3D打印替代品之间的比较摇篮生命周期评估。对每种产品的环境影响进行了18种类别的量化。生命周期评估(LCA)的目标是确定使用3D印刷PLA/PLA-WOOD产品是否可以成为传统金属产品的可持续替代品。本文提出了进行比较LCA的案例研究。结果表明,使用常规减法过程(铣削,钻孔,焊接等)制造的金属部分具有更高的环境影响。但是,需要充分解决许多子问题。
在液体涂料系统中,只有通过颜料的充分分散来破坏碳黑色团聚物,才能实现碳黑色的全部色素电量。铣削步骤需要与原位产生的碳黑骨料的适当稳定一起进行,以避免重新融合。通常,珠子磨坊用于分散碳黑色,某些添加剂用于稳定分散体。根据碳黑色类型的类型,磨坊基地中碳黑色的集中度约为10%至20%。在失败中,碳黑的浓度约为1.0-3.0%。为了获得最佳的分散,均衡的磨坊底座粘度对于获取有效的剪切力至关重要。通常在液体涂料中首选的粉末形式,因为它比串珠版本更容易分散。
开发环保电源生产技术。开发由竹,石灰石和姜黄制成的发电厂,以增加电解质溶液中电子的跳跃。这项研究旨在揭示姜黄作为从竹子和石灰石制造电解质溶液的催化剂的作用。这项研究的初始阶段始于高能量铣削(HEM)过程,将竹材料的大小降低到纳米尺寸。此外,竹子和石灰石溶解在水中,比为1:1。所使用的电极是铝和铜。姜黄用作催化剂,并增加原子数。比较竹子,石灰与姜黄1:1:1。石灰石通过激活偶极力并具有结晶特性,溶解在离子中。测试结果表明,与姜黄混合之前,由竹子和石灰石材料产生的电压为508 mV。此外,姜黄的添加产生的电压为1631 mV。
图 1. 成像装置和物理训练装置。待成像的二聚体被放置在物体平面上,通过低数值孔径透镜 L1(NA=0.3)用波长为 λ = 795nm 的相干激光光源照射。在二聚体上衍射的光通过高数值孔径透镜 L2(NA=0.9)在距离二聚体 h = 2λ 处成像(a)。通过在玻璃基板上的铬膜上聚焦离子铣削制造 12 x 12 = 144 个二聚体狭缝组(b);二聚体的狭缝具有随机宽度 A 和 C,并且以距离 B 随机间隔。在每个二聚体附近制造一个方形对准标记(c)。记录在每个二聚体上衍射的相干光的强度图案。图 (d) 显示了 50λ 宽视场中二聚体的特征衍射图案。
已经对生产商品的CO 2 E估计值进行了分析,以建立一个模型,以计算通过通过Tappesting优化的加工参数获得的估计CO 2 E减少。已经发现了几种标准和规范以及有关材料特征的数据库,目的是开发GHG计算器,估计由一个或多个零件上一个或多个加工操作引起的CO 2等效发射。已经开发了两个不同的模型,这是一个基于加工主轴功率的非常简单的模型,并考虑了更多方面的模型。在内部和外部测试这两个模型已经证明,在许多taptest优化(模态分析)的转弯和铣削的情况下,可以确定对CO 2 E排放的节省。温室气体计算器已经在多种情况下应用了,并且将与Tappesting有关。
