与图书馆或大多数大型数据库(如 EPA 的国家 STORET 水质数据库)一样,本文档包含来自不同来源、质量参差不齐的信息。在编撰本文档时,同行评审期刊文章以及质量控制机制相对复杂的数据库中都发现了错误 [366,649,940]。其中一些错误被找到并用“[sic]”符号标记,但毫无疑问其他错误还是漏掉了。编辑插入了 [sic] 符号,以指示看似错误或误导的信息或拼写,但仍然逐字引用,而不是任意更改作者所说的内容。很可能我们的一些工作中还添加了额外的转录错误和拼写错误。此外,对于如此复杂的主题,并不总是容易确定哪些是正确的,哪些是错误的,尤其是“专家”经常意见不一。在科学研究中,两位不同的研究人员得出不同的结果并导致他们得出不同的结论的情况并不少见。在编纂百科全书时,编辑们并没有试图解决这些冲突,而是简单地将其全部报告出来。
石墨 (2),石墨和钒 (3),钴、锰和铁(多金属)(1) 海绿石 (2),镍、铬及其相关矿物 (1),镍、铂族元素 (1),磷矿 (1),磷矿和石灰石 (2),磷酸盐和稀土元素 (1),钾碱和岩盐 (2),钨 (2),钨与伴生矿物(钼、金、铅、锌)(1),稀土元素和伴生矿物(铜、金及相关矿物)(1),稀土元素 (1)。
1谢菲尔德大学,公民和结构工程,英国谢菲尔德2苏黎世2,瑞士苏黎世环境工程研究所,瑞士3 EAWAG,瑞士联邦水上科学与技术研究所,杜宾德,瑞士,瑞士4号挪威特朗德海姆科学技术大学的民用与环境工程,挪威6单位液压工程部,部门荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia
Cr% Δ E (meV) 稳定相 M Tot ( μB ) M Al ( μB ) M Cr ( μB ) M Sb ( μB ) 4 0.00026 铁 0.11671 0.00163 3.13973 -0.02824 8 0.00146 铁 0.23694 0.00338 3.1305 -0.05262 12 0.00313 铁 0.35691 0.00504 3.12125 -0.07593 16 0.00517 铁 0.47674 0.00663 3.11375 -0.09868 20 0.00753 铁0.59647 0.00817 3.10763 -0.12114 24 0.00095 铁磁 0.71616 0.00969 3.10249 -0.14348 此外,图3显示了Cr掺杂AlSb的配置,其表现出正的ΔE,表明其在铁磁状态下比在反铁磁状态下更稳定。图3中的分析表明,不仅杂质的3d态,而且Sb的4p态也对费米能级有显着贡献。AlSb和Cr的共掺杂表明铁磁稳定基于具有强pd杂化的双交换机制。此外,图3显示了计算出的Cr掺杂闪锌矿AlSb的居里温度(TC)。结果表明,这两种过渡金属在室温以上都有较高的TC值。值得注意的是,钒的TC高于钛,达到750K。而且,图上显示TC随掺杂浓度的增加而增加。
f纳克技术大学,丹麦技术大学物理系,丹麦2820 G材料学院,太阳YAT-SEN大学,广州510275,H中国H中心微型/纳米电子中心(Novitas),电气和电子工程学院,电气和电子工程学院,Nanyang技术大学CNRS/NTU/THALES,UMI 3288,研究技术广场,637553,新加坡†相同的贡献 *相应的作者。Karen Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sgKaren Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sg
摘要 采用综合系统动力学模型 WORLD6 评估不锈钢对社会的长期供应,同时考虑可提取的原材料量。这是同时处理四种金属(铁、铬、锰、镍)的结果。考虑到合金金属锰、铬和镍的供应,我们评估了可以根据需求生产的不锈钢数量以及生产时间。可提取的镍量很少,这限制了可以生产多少不同质量的不锈钢。模拟表明,镍是不锈钢生产的关键元素,稀缺性问题取决于镍供应和回收系统的管理程度。研究表明,不锈钢产量很可能在 2055 年左右达到最大产能,然后缓慢下降。该模型表明,含锰-铬-镍类型的不锈钢将在 2040 年左右达到产量峰值,由于镍供应限制,产量将在 2045 年后下降。钴、钼、钽或钒等金属的产量太小,无法替代缺失的镍。这些金属本身作为超级合金和特种钢以及其他技术应用的重要成分是有限的。由于稀缺性,不锈钢价格上涨,我们预计回收率会上升,并在一定程度上缓解下降趋势。在回收率超过 80% 的情况下,镍、铬和锰的供应将足够几个世纪。
• 自安装以来,R-45 筛网 2 中的铬浓度一直在增加 • NMED 认为,附近的注入井的使用可能导致污染物更深地进入东部地区的区域含水层 • 2023 年 3 月 30 日,IM 运营关闭,以遵守 NMED 的指示,在 2023 年 4 月 1 日前停止注入