这项工作得到了国家科学技术重大项目(2022ZD0114900)的部分支持Horizon Europe框架通过可触及的项目(101092518)。(Zihang Zhao和Yuyang li对这项工作也同样贡献。相应的作者:Lecheng Ruan和Yixin Zhu。)Zihang Zhao和Yixin Zhu曾与中国北京大学100871北京大学的人工智能研究所一起(电子邮件:zhaozihang@stu@stu.pku.edu.edu.cn; yixin.zhu@pku.edu.edu.cn)。Yuyang Li和Zhenghao Qi曾在中国北京大学,北京大学,北京大学和北京通用人工智能研究所,中国北京100080,中国以及自动化部,北京大学,北京大学,北京大学,北京大学,北京大学,北京100084,中国(电子邮件): {liyuyang20,qi-zh21}@mails.tsinghua.edu.cn)。Wanlin Li与中国北京100080的北京通用人工智能研究所合作(电子邮件:liwanlin@bigai.ai)。Lecheng Ruan曾在中国北京100871的北京大学工程学院以及中国武汉430075的PKU-Wuhan人工智能研究所(Ruanlecheng@ucucla.edu)任职。Zihang Zhao和Lecheng Ruan在这项工作中也部分地在北京通用人工智能研究所中。数字对象标识符(DOI):请参阅此页面的顶部。Kaspar Althoefer曾在英国伦敦皇后大学伦敦皇后大学工程与材料科学学院内的高级机器人中心 @皇后玛丽(Queen Mary),伦敦E1 4NS(电子邮件:k.althoefer@qmul.ac.uk)。
摘要:本文介绍了基于管子的模型预测控制(MPC),用于自主铰接式车辆的路径和速度跟踪。这项研究的目标平台是具有不可轴轴的自主铰接式车辆。因此,铰接角和车轮扭矩输入由基于管的MPC确定。所提出的MPC旨在实现两个目标:最大程度地减少跟踪误差并增强对干扰的鲁棒性。此外,自动铰接式车辆的横向稳定性被认为反映了其动态特性。使用局部线性化制定了MPC的车辆模型,以最大程度地减少建模误差。参考状态是使用基于线性二次调节器的虚拟控制器确定的,以提供MPC求解器的最佳参考。通过在噪声注入传感器信号的基础算法的模拟研究中评估了所提出的算法。仿真结果表明,与基础算法相比,所提出的算法达到了最小的路径跟踪误差。此外,提出的算法对多个信号表现出对外部噪声的鲁棒性。
摘要:激光金属沉积(LMD)是一种添加剂制造(AM)工艺,能够为航空航天和石油和天然气行业生产大型组件。这是通过将沉积头安装在运动系统上(例如铰接机器人或龙门计算机数值控制(CNC)机器)来实现的,该机器可以扫描大容量。铰接式机器人比CNC机器更具灵活性,更便宜,而CNC机器另一方面更准确。本研究将两个LMD系统与不同的运动体系结构(即八轴铰接的机器人和五轴CNC龙门机)进行了比较,以产生大型燃气涡轮机轴对称成分。将相同的过程参数应用于两个机器。沉积的组件在几何形状上没有显着差异,表明两台机器的精确性不同的性能不会影响结果。发现表明LMD可以始终如一地生产具有两种设备的大规模轴对称金属组件。对于此类应用程序,用户可以选择在灵活性和成本是必不可少的情况下,例如在研究环境中或CNC机器时使用铰接式机器人,在工业环境中,易于编程和过程标准化是重要元素,例如在工业环境中。
儿童已经参与了技术共同设计流程已有几十年了。先前的研究提出了对儿童参与者的潜在好处,但研究没有就这些设计方法对参与这些过程的成年设计师的影响进行研究。,我们与18名成年人进行了回顾性的在线调查,他们与儿童专门针对儿童进行了共同设计。综合了有关其经验,学习和建议的回答。总的来说,参与者认为他们与孩子合作并听到他们的观点是个人和专业以及产品对儿童的可用性的有价值的经历。参与者还指出了一些用于共同设计过程的挑战或领域。未来工作的领域可能包括对这些经历对成年人的影响以及通过与儿童共同设计开发的技术的影响。
表格列表................................................................................................................ x
摘要:昆虫利用腹部和其他附肢的动态铰接和驱动来增强气动飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往是紧凑的、平移的、内部安装的并且专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术以探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。这里开发的多体飞机飞行动力学的紧凑张量模型允许对具有机翼和任意数量的理想附肢质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架蜻蜓状的固定翼飞机。移动腹部的控制效果与控制面相当,横向腹部运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降舵相同的效果,并且包括上下可能有用的瞬态扭矩反应。当在控制解决方案中同时使用移动质量和控制面时,可实现最佳性能。使用本文介绍的多体飞行动力学模型设计的现代最优控制器可以管理机身驱动与传统控制面相结合的飞机。