传动装置:静液压传动装置,在负载下全动力换挡,无论是在改变方向(前进和后退)时还是在范围之间。在所有范围内均可实现最大牵引力。“英寸/制动踏板”用于可变机器速度控制,并在发动机转速恒定时将动力传输到铲斗液压系统。多功能杆用于改变方向、差速锁和使用伺服控制。车轴:由两个刚性门式车轴实现全轮驱动。差速锁:两个车轴均采用液压驱动的 100% 差速锁。车架:坚固的前后车架,机器人焊接。铰接式摆动接头可实现最佳机动性和牵引力。
我们利用桑迪亚国家实验室在电子和元件小型化方面的能力以及材料科学和电源方面的进步来创建创新系统,这些系统正在医学、太空探索和监视等领域引发革命。我们拥有制造能力,可以开发中小型和微型跳跃、爬行、轮式、履带式和铰接式微型机械车辆。微型自动驾驶车辆的发展与我们先进的控制技术相结合,使得能够开发出能够执行当今难以或不可能完成的任务的微型自动驾驶车辆群,例如定位和拆除地雷、检测化学和生物武器以及核实条约。我们专注于利用机械、电气/电子、磁、流体、热和化学现象以及先进材料的小型多领域工程系统。
单位 - il 2' 建筑物中的一根柱子高 4m,其底端固定,顶端铰接' 由梁产生的反作用力为 500 KN,偏心距截面主轴 60 mm。检查 ISHB 300 @0.5g KN/m 截面是否足够。.- vv Y7 v'JL (16) OR 2' a) ISA 125 mm x 75 mm x 8 mm 用作钢屋架中的不连续支撑' 如果螺栓连接中心之间的长度为 2.rm,则求其抗压强度。 -- ---D (6) b) 设计一个 3.5 米长的支柱,位于建筑物内,承受 550 KN 的分解载荷。支柱两端均采用受约束的间接和定位。使用 Fe 410 级钢材。 --J -vva..'r (10) 单位 - tII 3' 根据以下数据设计有效跨度为 6m 的横向支撑梁。钢材等级:Fe 410
• 根据 ISO 15223-1:2021 使用的符号 医疗器械——与制造商提供的信息一起使用的符号——第 1 部分:一般要求(例如,如果包装已打开或损坏、非无菌,请勿使用) • 供应商的名称、地址和联系信息 • 配套组织的名称、地址和联系信息 • 供应商建议的最大灭菌循环次数* • “非无菌产品在使用前必须灭菌/高压灭菌” * 要求供应商根据适用的 ISO 标准提供有关组件可重复使用次数的指导(ISO 13402:1995 外科和牙科手持器械——耐高压灭菌、腐蚀和热暴露的测定;ISO 7151:1988 手术器械——非切割、铰接式器械——一般要求和试验方法;ISO 7153-1:2016 手术器械——材料——第 1 部分:金属;和/或ISO 7741:1986 手术器械-剪刀和剪切器-一般要求和试验方法)。
操作要求 海况三 系统重量 ≤2200 磅 船舶平台 SL‐120(飓风级船舶) 环境 MIL STD‐810G(湿度、绿水、盐雾) 射频发射器 发射器 磁控管发射器 压水器至天线 4‐10MW 发射器调谐频段 2600‐3950MHz 调制 脉冲天线 天线频率范围 2600‐3950MHz 天线极化 水平 水平增益 30‐33dBi 天线重量 ≤400 磅 AZ/EL 铰接 机械或电动(范围待定) 调制器驱动 4‐10MW 脉冲宽度 可变,远程可编程 脉冲重复频率 可变,远程可编程 电压 可变,远程可编程 电弧检测 是 电压和电流监控 是 热管理解决方案 是 子组件 调制器组件,高压 电源输入440V/60Hz/3 相
按体积和目前 MIM 行业中使用的其他常见合金金属粉末等级计算,铝的价格也只有铜价格的三分之一左右。铝 MIM 尚未普及的原因包括其强度较低、难以烧结,以及至今缺乏零件制造商可轻松加工的原料。典型的 MIM 零件尺寸为 5 – 100 克,使用铝 MIM 技术可以为电子和医疗行业制造多种复杂零件。Parmatech Corporation [3] 发布的案例研究讨论了更换因强度不足而失效的塑料铰接齿轮。塑料零件暂时用机加工铝零件更换,然后永久用 17-4 不锈钢更换。铝 MIM 有很多潜在机会来替代这一类别的零件,但它要求零件生产商有更多加工铝 MIM 零件的经验。
用于航空通信技术的保形轻型天线结构 (CLAS-ACT) – 开发基于超轻薄气凝胶的保形微波天线,该天线可以贴合飞机轮廓,避免干扰,减少阻力、燃油消耗和排放。促进超高效、低排放航空动力 (FUELEAP) – 利用高效固体氧化物燃料电池 (SOFC)、高产燃料重整器和混合动力飞机架构的技术融合,开发紧密集成的电力系统,以两倍的燃烧效率利用碳氢化合物燃料发电。用于 NASA 电动飞机的锂氧电池 (LION) – 研究设计抗分解的超稳定电解质的可行性,以延长电池使用寿命,让电动飞机飞得更远。翼展自适应机翼 (SAW) – 通过使用形状记忆执行器铰接机翼外侧部分,允许在保持稳定性的同时减小方向舵的尺寸,从而提高飞机效率。
从 1984 年开始,F28 F 和 280FX 直升机的毛重限制为 2600 磅。由于安装了涡轮增压器,主旋翼和尾旋翼转速较低,Enstrom 直升机相对安静。它们可以配备可选的辅助消声器,可显著降低噪音特征。所有 Enstrom 直升机均采用三叶片全铰接式主旋翼系统,该系统拥有超过 4,000,000 小时的飞行时间,从未发生过灾难性故障或抛出叶片。尾旋翼为两叶片,完全畅通无阻,效率极高。由于采用高惯性旋翼设计,直升机具有出色的自动旋转能力。除了是多功能和耐坠毁的直升机外,280FX 和 F28 F 直升机的设计采购和运营成本也非常低。直升机不需要液压增压或稳定性增强系统。疲劳关键部件数量有限、大修间隔长、高可靠性和易于维护导致的低小时/飞行比,这些因素结合起来可降低运营和支持成本。
在欧洲旋翼机空气动力学和声学 (HELISHAPE) 大型合作研究计划的框架内,在 DNW 的开放测试部分进行了参数模型旋翼测试,使用 DLR 的 MWM 测试台和配备先进设计的叶片和两个可更换叶尖的全铰接式 ECF 旋翼的高度仪器化模型。一组叶尖 (7A) 为矩形,另一组 (7ADI) 为后掠抛物线/上反角形状。这项实验研究的目的是评估降噪技术(概念上通过改变旋翼速度、专用叶尖形状和先进的翼型,以及操作上通过确定低噪音 - BVI 最小化下降程序)并验证合作伙伴的空气动力学和声学代码。同时测量了叶片表面声学和气动压力数据以及叶片动力学和性能数据。此外,通过 LLS 流动可视化获得了有关尖端涡流几何形状和叶片涡流错开距离的宝贵信息。简要描述了实验设备、测试程序和测试矩阵。介绍了主要结果,并讨论了两个转子最重要的参数变化趋势。
从 1984 年开始,F28 F 和 280FX 直升机的毛重限制为 2600 磅。由于安装了涡轮增压器,主旋翼和尾旋翼转速较低,Enstrom 直升机相对安静。它们可以配备可选的辅助消声器,可显著降低噪音特征。所有 Enstrom 直升机均采用三叶片全铰接式主旋翼系统,该系统拥有超过 4,000,000 小时的飞行时间,从未发生过灾难性故障或抛出叶片。尾旋翼为两叶片,完全畅通无阻,效率极高。由于采用高惯性旋翼设计,直升机具有出色的自动旋转能力。除了是多功能和耐坠毁的直升机外,280FX 和 F28 F 直升机的设计采购和运营成本也非常低。直升机不需要液压增压或稳定性增强系统。疲劳关键部件数量有限、大修间隔长、高可靠性和易于维护导致的低小时/飞行比,这些因素结合起来可降低运营和支持成本。
