摘要:食品浪费是一个紧迫的全球挑战,每年造成超过 1 万亿美元的损失,占全球温室气体排放量的 10%。大量研究致力于使用活性可生物降解包装材料来改善食品质量、最大限度地减少塑料使用并促进可持续包装技术的发展。然而,这方面的成功有限,这主要归因于材料性能差和生产成本高。在最近的文献中,银纳米粒子 (AgNPs) 的整合已被证明可以改善生物聚合物的性能,从而促进生物纳米复合材料的发展。此外,AgNPs 对食源性病原体的抗菌特性可延长食品保质期,并为减少食品浪费提供途径。然而,很少有评论从工业角度对整个生物聚合物组合中的 AgNPs 进行整体分析。因此,本评论批判性地分析了基于 AgNP 的生物纳米复合材料的抗菌、阻隔、机械、热和防水性能。我们还从食品包装应用的角度讨论了这些先进材料,并评估了它们在延长食品保质期方面的表现。最后,我们批判性地讨论了 AgNP 生物纳米复合材料商业化的当前障碍,以提供一项工业行动计划,以开发可持续包装材料,减少食品浪费。
“纳米技术”是指能够制造尺寸在“纳米”范围内的物体的技术领域。纳米粒子是纳米技术的核心组成部分。纳米材料的发展,特别是无机纳米粒子 (NP) 和纳米棒,具有独特的用途和与块体材料截然不同的尺寸相关物理化学性质,导致了纳米技术产业的爆炸式增长。特别是,AgNP 对纳米医学和纳米科学和纳米技术领域的其他领域至关重要。物理、化学或生物机制都可用于生产 AgNP。除了用作生物传感器、疫苗佐剂、抗糖尿病药物以及促进骨骼和伤口愈合外,AgNP 主要用于抗菌和抗癌治疗。纳米粒子是一种用于疾病治疗中微分子和大分子靶向和可控递送的有利递送系统,因为亲水性和疏水性物质都易于结合,与配体形成稳定的相互作用,尺寸和形状多样,载体容量高,与配体相互作用稳定。当治疗剂和纳米粒子一起使用时,传统疗法的问题就被克服了。目前,许多科学家和研究人员正致力于研究银纳米粒子在精神疾病、关节炎、高血压和多囊卵巢综合征 (PCOD) 治疗中的应用。
结婚纪念日那天,租车在当时也是很划算的——但我不确定联名账户能否支付即将到来的米其林星级大餐的账单。现在,黄昏时分,当他和妻子坐在司机驾驶的 Silver Spur 后座沿着泰晤士河岸滑行时,这位新婚夫妇的脑海中闪过许多想法:“生活不会比这更好了……不知道餐厅的账单会花多少钱……他们怎么会想到在这么漂亮的车上安装那些愚蠢的 Series 1 XJ6 式门饰板?”好吧,结婚近 25 年后,我很高兴地说事情每年都在好转,我甚至有了自己的 SZ;用餐期间火警响了,我们得到了折扣以补偿不便(说实话,没有折扣我们根本付不起账单);但我仍然不知道是谁认为引入那些预装 ABS 和 EFi 的门饰板是个好计划。理查德·查恩利 richard@charnleypublishing.co.uk
火的存在与否都塑造了流域内依赖其生存的野生动物物种的植被特征和栖息地。研究表明,自然火灾的发生可能具有中等重现间隔,主要为低强度到中等强度,以及随机高强度燃烧事件。人们普遍认为,美洲原住民使用火作为维持生计的工具。欧洲人定居的出现可能增加了流域内火灾的频率、规模和强度。从 20 世纪 40 年代开始,灭火开始扭转这一趋势,政策是将所有火灾控制在尽可能小的规模。生态迹象表明,没有火这种自然干扰因素,导致更容易发生更严重的火灾,同时导致陆地景观的多样性减少。一旦研究完成并制定计划,当今的政策已经为火发挥更自然的作用打开了大门。
摘要将纳米颗粒作为腐蚀抑制剂的使用变得越来越受欢迎,因为由于表面与体积比的增加,其腐蚀效率提高。纳米颗粒,可有效地对腐蚀金属表面进行物理/化学吸附并有效抑制腐蚀,也具有低毒性,低成本和易于产生的腐蚀性。在这项研究工作中,使用减肥方法来研究使用Senna Occidentalis根提取物合成的银纳米颗粒(AGNP)的抑制性能,作为在298 K和308 K处的0.5 m H 2 SO 4培养基中降低的降低碳钢抑制剂的环境良性腐蚀抑制剂。观察到,与钢的腐蚀速度增加了钢的腐蚀速度,并增加了与钢的腐蚀速度相比的腐蚀量增加了钢的腐蚀量,并在钢铁中的腐蚀速度增加了钢的腐蚀。在308 K时,在308 K -3的浓度下,在308 K的浓度下获得了65.59%的最高抑制效率,在308 K时浓度为1 GDM -3时,最低抑制效率。观察到表面覆盖率随纳米颗粒浓度的增加而增加,并且随温度的升高而下降。这可能是由于物理吸附机制的结果。发现,在抑制过程中,评估的活化能比未抑制过程高。在存在纳米颗粒的情况下,明显活化能的增加表示物理吸附机制,而相反的情况通常归因于化学吸附。吸附Q AD的热值表明吸附现象是放热的。简介关键字:纳米颗粒,银,纳米颗粒,塞纳西南利斯,腐蚀。
地毯、地毯垫和地毯粘合剂应满足以下任一测试和产品要求:1. 地毯和地垫研究所的绿色标签计划 2. 加州公共卫生部,“使用环境室测试和评估室内源挥发性有机化学物质排放的标准方法”,版本 1.1,2010 年 2 月(也称为规范 01350)。3. NSF/ANSI 140 黄金级 4. Scientific Certifications Systems Indoor Advantage™ 黄金级。安装在建筑物内部的地毯垫应满足地毯和地垫研究所绿色标签计划的要求。复合木制品 3 分
2. 概要规划申请(所有事项保留),分阶段交付场地剩余部分,以拆除现有建筑物和结构;建造建筑物,包括高层建筑,包括一个新的当地中心;一所小学(使用类别 D1);住宅单元(使用类别 C3);灵活就业建筑面积(使用类别 B1b、B1c、B2(受限)和 B8);灵活就业建筑面积(使用类别 B1c、B2 和 B8);灵活零售建筑面积(使用类别 A1- A4);社区和休闲建筑面积(使用类别 D1 和 D2);建造新的防洪墙并在泰晤士河附近提供生态栖息地和相关基础设施;街道、开放空间、景观美化和公共领域(包括新公园和 SINC 改进);汽车、摩托车和自行车停车位和服务空间;包括能源中心和电力变电站在内的公用设施;以及与拟议开发相关的其他工程。
由于一维线性通道的扩散限制,纳米沸石的合成和催化应用已被证明是提高各种扩散限制烃转化性能的有效策略 [7,8]。由于废物消耗和污染,工业的增长对全球环境构成了严重威胁。应做出更多努力来减少环境污染。解决这一重大问题的有效方法之一是光催化 [9]。尽管许多类型的材料被用于催化,如硫属化物、金属氧化物和钙钛矿 [10,11]。沸石的多孔笼状结构有许多应用,包括气体检测和清洁 [12,13]。沸石可以通过多种方法成功合成,例如盐化、密闭空间合成和微波合成法 [14,15]。已经报道了用微波法制备的纳米级林德 L 型沸石。由于这些金属氧化物和钙钛矿的稳定性较差,研究人员发现沸石是光催化的主要候选材料,因为它的二次氢解程度较低,在正辛烷芳构化中对 C-8 芳烃的选择性较高 [16]。然而,微波合成法被认为耗能,不适合工业应用和技术催化 [17]。因此,开发一种经济高效、易于扩大规模的方法来制备具有改进催化性能的纳米级林德 L 型沸石是极其必要的。幸运的是,一些研究人员观察到加入少量钡可以促进纳米级林德 L 型沸石的形成 [18]。据我们所知,Ba 对林德 L 型结晶过程的影响的解释仍不清楚。全面了解形成过程对于更科学地调节沸石晶体尺寸也具有重要意义。此外,林德 L 型沸石晶体尺寸对正构烷烃芳构化的影响还需要进一步系统研究。Bernard 等人首次报道了非酸性 0.71 nm 一维 12 元环通道的林德 L 型沸石在负载铂的情况下表现出优异的烷烃芳构化性能。通过水热法成功合成了纳米尺寸的林德 L 型沸石[19,20]。林德 L 型沸石具有六方晶体结构(空间群 P-6/mmm),晶胞常数 a = b = 18.4 和 c = 7.5 [21,22]。林德 L 型沸石在过去 20 年中引起了广泛关注
∞必须有资格,必须在24小时内参加医院急诊室。最高医院的覆盖范围最多适用于事故发生90天。其他条件适用。当您至少往返200公里时,请参见hcf.com.au/accident-safeguard *。适用其他条款和条件。请访问hcf.com.au/travel-cobsodation,以了解更多 ^最多6个月。适用其他条件和等待期。请参阅hcf.com.au/unemployment-assistance
随着电子银行技术的广泛部署,确定其如何影响银行绩效的兴趣引起了人们的兴趣。这项研究的目的是从银行高管的角度研究电子银行和银行绩效之间的联系。使用了一种定量研究方法。根据调查结果,电子银行改善了银行的财务绩效,运营效率,客户满意度和竞争优势。此外,研究发现,电子银行采用水平之间的水平有所不同,这可能归因于组织文化,基础设施和监管环境等变量。这些发现对银行的战略规划和投资决策以及推动银行业未来的政客和监管机构产生了重要影响。