WITH EPOXY RESIN COMPOSITES Z. HUSSAIN a , S. TAHIR a,b,* , K. MAHMOOD a , A. ALI a , M. I. ARSHAD a , S. IKRAM a , M. AJAZ UN NABI a , A. ASHFAQ a , U. UR REHMAN a , Y. UDDASSIR a a Government College University Faisalabad, 38000, Pakistan b University Of New South Wales, Australia Silver纳米颗粒具有出色的,电和光学特性,使其非常适合光学,生物医学和抗菌剂应用。当前研究的主要目标是改变表面电阻,以增加其吸收。在这项研究工作中,银纳米颗粒是通过共沉淀法制备的。对于此Agno 3和环氧树脂在250 mL去离子水中混合,搅拌半小时。然后,通过滴下滴下降氨溶液NH 4 OH,以将溶液的pH值保持为(10-11)。过滤溶液后,将滤液在150 0 C的温度下干燥2小时C,将其磨碎后,将其在5小时的时间跨度以1000 0 C放入炉中。通过增加0.5g银中环氧树脂(0.25g,0.5g和0.75g)的浓度来制备三个样品。通过使用XRD在27 0角度使用XRD,峰强度增加320(A.U)。峰强度的增加表明,环氧树脂的沉积和质地是在相同的方向上创建的。由FTIR检查的样品具有0.5 g环氧树脂和0.5g Ag,显示出具有C -H弯曲的796.72 cm -1的尖峰。还出现一个宽峰564.88厘米-1,与甲基匹配。引言纳米技术是分子量表的功能系统的工程。另一个样品在FTIR检查的0.5 g白银中具有0.75g环氧树脂,在875.79cm -1时显示出尖峰,显示C = C键。在1424.36厘米-1、564.88cm -1和464.80cm -1的1424.36cm -1和464.80cm -1获得了三个宽峰。用银样品的紫外可见光谱显示出在381.98 nm处获得𝜆max,显示了分子的强光子吸收。结论是,银中环氧树脂复合材料是增强银纳米颗粒技术应用的一种有前途的方法。(2020年6月6日收到; 2020年8月31日接受)关键词:硝酸银(AGNO 3),NH 4 OH,环氧树脂,pH,X射线衍射(XRD),傅立叶转化Infra-Red Spectroscoppopy(ft-ir),UV-Vis-Visible Spectroscoppy 1。这涵盖了当前的工作和更高级的概念。现代合成化学已经达到了可以将小分子制成几乎任何结构的地步。这些方法今天用于生产各种有用的化学物质,例如药物或商业聚合物。这种能力提出了将这种控制范围扩展到下一个大量水平的问题,寻求将这些单分子组装到由许多分子组成的超分子组件中,这些分子以明确的方式排列的许多分子。
40-3900填充银色的环氧树脂描述:40-3900是两个成分的环氧粘合剂,充满了银。该导电环氧树脂制剂提供的电阻率连续性,其电阻率值小于1x10 -4 ohm -cm。40-3900也以其宽的工作温度范围(-50至 + 170°C)而闻名。40-3900是专门设计用于微电子和光电应用中的粘合键的。由于其出色的连续性,它也已广泛用于诸如微波EMI和RFI屏蔽等应用,在印刷电路板的组装或修理中,波浪指南,电子模块,平坦电缆,高频屏蔽,连接器,电路,电路,以及作为冷焊料。40-3900用纯银(无合金)配制,并以方便的1:1混合比设计。树脂和硬化剂都分散了银色粉末。特征:<电导•热导电•室温固化•易于1:1混合比•良好的粘结强度典型规格:混合比,重量为1:1彩色银色混合粘度奶油粘贴质量寿命,100克质量 @ 25°C 1小时1小时的重力,25°C 25°C树脂2.98硬度1.8硬度,Shore D 70 d 70 drancile,Shore d 70 thoral dromal Tonstrivity,w 70 k. Lapshear,PSI(Al至Al)700弯曲强度,PSI 10,200音量电阻率,OHM-CM .0001操作温度。 范围,°C -50至 + 170治疗时间表a)24小时 @ 25°C b)1小时 @ 65°C)15分钟 @ 90°C电导•热导电•室温固化•易于1:1混合比•良好的粘结强度典型规格:混合比,重量为1:1彩色银色混合粘度奶油粘贴质量寿命,100克质量 @ 25°C 1小时1小时的重力,25°C 25°C树脂2.98硬度1.8硬度,Shore D 70 d 70 drancile,Shore d 70 thoral dromal Tonstrivity,w 70 k. Lapshear,PSI(Al至Al)700弯曲强度,PSI 10,200音量电阻率,OHM-CM .0001操作温度。范围,°C -50至 + 170治疗时间表a)24小时 @ 25°C b)1小时 @ 65°C)15分钟 @ 90°C
由于现代社会人口爆炸式增长和工业发展迅猛,能源需求不断增加,环境问题日益严重,因此进一步发展高效的能源转换技术,从太阳能、生物质能、风能和潮汐能中获取可再生能源已引起人们的广泛关注。1 – 3 储能系统 (EES) 是重要的推动因素之一。储能系统主要包括两大类,前者通过电极材料中的氧化还原反应将电能以化学能形式储存,后者利用电极材料表面离子的快速物理吸附。4 – 6 电荷存储机制的差异使电池具有高能量密度,而超级电容器具有高功率密度。4,7,8 例如,
锌补充剂(系统)类别营养补充剂(矿物质);铜吸收抑制剂。指示注意:指示部分中的包围信息是指美国产品标签中未包含的用途。接受的锌缺乏症(预防和治疗)¾锌补充剂在预防和治疗锌缺乏症中可能是由于营养不足或肠道吸收不足以及其他干扰锌利用或增加体内锌损失的情况所致,但在健康的个体中不会出现锌损失,但在健康的个体中不受锌的损失。建议预防锌缺乏,饮食改善而不是补充。用于治疗锌缺乏症,首选补充。107锌的缺乏可能导致增长迟钝,男性性能性不足,厌食症(可能是由于味觉和嗅觉的变化),精神抑郁,皮肤炎,伤口 - 治疗障碍,免疫功能受损,腹泻,腹泻和异常的维生素,具有障碍的夜视。6、17、18、23、53可能会增加建议的摄入量,并且在以下条件下可能需要补充(基于证明的锌不足):酒精中毒6、23、24烧伤5、6、6、18肝硬化6、18、18、18、23糖尿病糖尿病糖尿病6、23 ¾二甲状腺炎肠道病,唐氏综合症,镰状细胞贫血,35个thalassyaharsia血液透析5,37例,因免疫反应减少17,18肠道疾病,第20次CROHN,20克罗恩,5 diarrhea's,5 diarrhea,17,17,21 21 Sprue,34 sproue,34
Zn Anode J. Electrochem. Soc. 2020,DOI:10.1149/1945-7111/ab7e90。Small Structures 2022,DOI:10.1002/sstr.202200323。ACS Appl. Energy Mater。2023,DOI:10.1021/acsaem.3c00572。隔膜和聚合物凝胶电解质 Adv. Energ. Mater。DOI:10.1002/aenm.202101594。(高 Zn DOD)ACS Applied Energy Mater。2022,DOI:10.1021/acsaem.2c01605。ACS Appl. Polym. Mater。2022,10.1021/acsapm.1c01798。 ACS Appl. Mater & Interface 2020,DOI:10.1021/acsami.0c14143。J. Power Sources 2018,DOI:10.1016/j.jpowsour.2018.05.072。Mater. Horiz. 2022 DOI:10.1039/D2MH00280A。(高压)聚合物 2022,DOI:10.3390/polym140304417。碱性条件下 Zn、Cu 或 Bi 的 ASV 分析电分析 2020,DOI:10.1002/elan.202060412。电分析 2017,DOI:10.1002/elan.201700337。电分析 2017,DOI:10.1002/elan.201700526。空气阴极 ACS 催化 2023,DOI:10.1021/acscatal.3c01348。选择评论 Acc. Mater. Res. 2023 DOI:10.1021/accountsmr.2c00221。J. Electrochem. Soc. 2020,DOI:10.1149/1945-7111/ab9406。化学前沿 2022。DOI:10.3389/fchem.2021.809535。MRS 能源维持。2021,DOI:10.1557/s43581-021-00018-4。Mater. Sci. Eng. R Rep. 2021,DOI:10.1016/j.mser.2020.100593。DOE 能源存储手册 2021,https://www.sandia.gov/ess-ssl/eshb/
纸质电子产品为柔性和可穿戴系统提供了一种环境可持续的选择,并且完美适配现有的印刷技术以实现高制造效率。作为耗能设备的核心,纸基电池需要与高保真度的印刷工艺兼容。在此,水凝胶增强纤维素纸 (HCP) 被设计用作纸电池的隔膜和固体电解质。HCP 可以承受比原始纸更高的应变,并且在四周内可在自然环境中生物降解。印刷在 HCP 上的锌金属 (Ni 和 Mn) 电池具有显著的体积能量密度 ≈ 26 mWh cm –3 ,并且还具有可切割性和与柔性电路和设备的兼容性。因此,可以通过将印刷纸电池与太阳能电池和发光二极管集成来构建自供电电子系统。该结果凸显了水凝胶增强纸用于无处不在的柔性和环保电子产品的可行性。
https://doi.org/10.26434/chemrxiv-2024-b7pr1 orcid:https://orcid.org/0000-0000-0002-3346-937x contern content content content content contem 许可证:CC BY-NC-ND 4.0https://doi.org/10.26434/chemrxiv-2024-b7pr1 orcid:https://orcid.org/0000-0000-0002-3346-937x contern content content content content contem许可证:CC BY-NC-ND 4.0
锂离子电池 (LIBs) 具有高能量密度和长寿命的特点,在便携式电子设备和电动汽车方面取得了显著成功 [1-4]。然而,由于有机电解液、锂储量不足和成本高等问题,LIBs 的进一步应用受到限制 [5-7]。因此,有必要开发替代性二次电池来取代 LIBs [8,9]。水系锌金属电池 (AZMBs) 已成为有竞争力的候选电池,因为锌 (Zn) 金属负极具有优异的理论容量 (820 mAh g −1 和 5855 mAh cm −3) 和低电化学电位 (−0.76 V vs. 标准氢电极)、丰富的锌资源,以及水系电解质固有的安全性和高离子电导率 (~ 1 S cm −1 vs. 1-10 mS cm −1 有机电解质) [10-16]。然而,锌金属负极存在析氢反应(HER)、腐蚀、钝化、枝晶生长等严重问题,导致可逆性差、循环寿命不稳定,甚至发生短路故障[17–23]。这些问题严重阻碍了AZMBs的实际应用。为了克服上述问题,人们提出了各种针对锌金属负极的稳定策略,包括表面改性、结构优化、电解质工程和隔膜设计[24–31]。然而,由于使用了远远过量的锌,这些研究尚未实现较高的锌利用率[32]。为了补偿Zn的不可逆损失,提高充放电过程的循环稳定性,研究人员通常构建Zn过量(Zn箔厚度≥100μm)、面积容量低(1-5mAh cm−2)的锌金属负极,导致负极与正极的容量比高(N/P>50),放电深度(DOD)较低(<10%)[33]。放电深度(DOD)是参与电极反应的容量占锌金属负极总容量的百分比: