青岛铸质工业提供的服务 l 砂型铸造 l 熔模铸造 l 壳型铸造 l 永久模铸造 l CNC 加工 作为一家专业的铸造制造商,青岛铸质工业非常注重质量和技术,我们的产品主要是铸件和锻件。 我们主要供应砂型铸造、熔模铸造(失蜡铸造或精密铸造)和压铸。 如今,其产品销往全球许多国家。 铸质专注于金属零件行业,我们在金属铸造领域提供专业的服务。 1. 砂型铸造 2. 熔模铸造 3. 壳型铸造 4. CNC 加工 5. CAD 设计 6. 工具/模具设计 许多来自世界各地的买家都从中国购买产品。 但您知道中国产品的质量吗? 也许您只支付了表面和价格,而内在质量却丢失了。 在 Solidworks 中进行外壳铸件设计。 是什么让铸质成为最好的?
在 AMC 供应链工具、标准和规范计划下,美国铸造协会进行了研究,以提供铸造 E357 铝的统计特性。铸造设计工程师需要的特性不是基于典型或平均特性,而是基于从多个供应源采购的复杂铸造设计生产中遇到的制造技术、不同截面厚度和冷却速率的变化的特性。目前,大多数铸造合金几乎没有统计验证,如果不逐个组件开发这些数据,就不能考虑用于更换或新设计。
的最大潜力在于实现更多铸态、净形状和低成本特征。位置公差和轮廓公差在铸造设计中未得到充分利用的最可能原因是其明显的复杂性。因此,本案例研究 3 的目的是解开复杂性,使其易于理解和应用。即使是为了更新旧的 2D 图纸(这是本铸造质量提示的背景),将某些特征转换为位置公差并将某些表面转换为轮廓公差也是值得的,而且效果很好。它之所以有效,是因为这两种公差方法使得由金属铸造供应商团队中的新合同授予者生产的传统替换零件铸件在首件检验时更容易获得批准。这是一个节省大量时间和成本的机会,可以帮助所有相关人员。以下示例展示了如何应用 GD&T 以获得强大而有益的结果的三个简单场景。
S+C 集团参与的最具挑战性的项目之一是研究和开发一种新材料,以使 Midrex ® 重整器和 HyL ® PGH 能够以更高的速度运行,而在此之前,这些材料受限于可用材料的冶金学约束。利用集团的协同作用、在极高温度应用合金开发过程中获得的知识以及多学科方法,S+C 向市场推出了最新一代合金 Centralloy ® 60 HT D 和 Centralloy ® HT E。使用铝作为合金元素的结果很简单,但这并不反映实现所需的最高抗氧化和抗蠕变性的技术复杂性。这两种合金的优异性能为 DR 工厂的运行设定了新的极限。
塑料作为一种材料的优势提供了许多有利的特性。它可以抵抗腐蚀和防风雨,因此可以将其存储而不会损失性能。更重要的是,不可能在安装过程中意外导致铸件混凝土支架的任何永久弯曲,因为它仅暂时柔韧,并且一旦卸下负载,就会返回其原始形状。
规范场景 最常见的场景 - 规范中未注明工艺内焊接返工:已焊接、混合、热处理并通过所有图纸指定检查的铸件通常在尺寸、物理、化学、冶金和结构上符合图纸要求。因此,商业铸件中很少注明限制或记录工艺内焊接返工表面缺陷的规范。同样,未按服务严重程度分类的军用或航空航天铸件通常也没有限制或记录工艺内焊接返工的规范。指定 AMS 2175(铸件分类和检验)的场景:对于军用和航空航天铸件,在 AMS 2175 中,铸造部件服务的严重程度分为 1 至 4 级,表面和/或内部完整性指定为 A 至 D 级。不同等级需要不同级别的无损检测取样,以验证是否符合指定的完整性等级。值得注意的是,等级与分类铸件高应力表面的循环寿命直接相关。AMS 2175 涵盖了几乎所有铸造工艺和全系列铸造合金,因此它也被用作安全关键铸件的商业标准,SAE 2175 与之相同。重要的是,AMS 2175 没有提及过程中焊接返工,仅规定 A 至 D 级缺陷的程度在射线照相、磁粉、模具渗透检测和/或目视检查中为“分级”。这是在所有铸件精加工过程(包括最终热处理)完成后进行的检查。这些精加工过程包括过程中焊接返工(如果适用)。无论是否焊接,通过指定等级都表明铸件设计的允许转换应力将实现预期的循环寿命。相反,不良的过程中焊接返工将导致表面和/或地下迹象无法通过指定完整性等级的测试。单击此链接“工艺中焊接返工规范和属性数据”,获取铝合金和镁合金最终热处理后焊接与铸态母合金的静态、循环和断裂韧性数据。工艺中焊接返工受到限制或必须记录的情形:使用 AMS 2175 来确保与循环寿命设计意图直接相关的表面和内部完整性,限制或要求记录工艺中焊接返工是一种不必要的“安全带加吊带”预防措施。例如,AMS-A-21180(高强度铝合金铸件)允许调用“无焊接区”或“仅在获得购买者书面许可的情况下进行焊接返工”。可能需要显示焊缝位置、尺寸和深度的地图
亲爱的 xxxxx,感谢您于 2022 年 5 月 30 日发来的电子邮件,请求以下信息:“我想索取哈雷戴维森 MT350 摩托车的维修详情和 ERM。底盘 VIN 号 1hdgrlt115y000243' 您的请求已根据 2000 年《信息自由 (FOI) 法》处理。对国防部 (MOD) 记录的搜索已完成,有关您的车辆的信息之前已发布;FOI 法第 21(1) 条规定,如果信息可以通过其他方式合理获得,则免于提供。Merlin 档案是作为先前 FOI 请求的一部分发布的,可以在以下政府出版物网站上访问:https://www.gov.uk/government/publications/foi-responses-published-by-mod-week- commencing-09-july-2018 根据 FOI 法案第 16 条(建议和援助),我可以告知您,上述链接中的数据库分为七个电子表格。第一个包含车辆列表,而第二至第七个表格包含服务历史记录。要搜索车辆,您必须按下计算机键盘上的 Ctrl + F,然后选择“选项”,然后从“范围”下拉列表中选择“工作簿”。可以通过输入车辆登记号(56KL25)并按“Enter”找到与您的请求相关的信息。我们认为正确的底盘号是 IHD6RLT11SY000243。为方便参考,您的车辆的详细信息可以在第一个附件“Merlin 2.0 附件 1”(第 116128 行)和第四个附件“Merlin 2.0 附件 4”(第 127343 至 127348 行)中找到。因此,您应该注意,部分数据可能不准确。我可以确认,联合资产管理和工程解决方案数据库中没有关于这辆车的记录。您可能希望注意,当 Merlin 数据库存档为其当前格式时,某些数据可能已丢失或损坏。
abtract。本文详细介绍了通过使用356铝合金和B 4 C粉末搅拌铸造的双重颗粒复合材料进行的研究。三个复合组合物,即A356加2%B 4 C(44µm大小和1:1比例的105µm大小),4%B 4 C(3:1比)和6%B 4 C(1:3比)用手指施放,从中为硬度和紧缩测试和张力测试效果准备了测试样品,以进行测试样品。Vickers硬度测试,拉伸测试和显微结构分析。获得的结果表明B 4 C颗粒均匀分布在合金基质中。eds还揭示了所有三个复合材料中B 4 C的存在。通常,随着浓度b 4 c粉末的增加,硬度和拉伸强度会增加。虽然硬度的增加量却小于15%,但拉伸强度显着增加(超过35%)。然而,以%伸长为代表的延展性,在356铸造合金中已经非常低(24.2%),在复合材料中进一步降低。拉伸分裂结果显示了晶体间断裂,其中观察到B 4 C粒子中的断裂而不是Deboning。k eywords。A356铝合金;双重复合材料;微观结构;机械测试;研究分析。
4 铝青铜铸件的制造和设计 53 A 铸件的制造 S3 铸件的制造 53 氧化物夹杂 - 收缩缺陷 - 凝固范围 - 气孔 缺陷预防 56 避免氧化物夹杂 - 定向凝固 - 静态方法定向凝固 - 避免气孔 - 吹气 - 差别收缩和变形 质量控制、测试和检查 66 质量控制的重要性 - 方法记录 - 预铸质量控制 - 铸件质量检查 图案设计 68 B 铸件的设计 71 简介 71 设计以避免收缩缺陷 72 形状的简单性 - 锥度 - 薄壁与厚壁的关系 - 壁面连接和/或圆角半径 - 孤立块 - 腹板和肋条 - 芯孔 - 加工余量的影响 其他设计考虑 76 流动性和最小壁厚 - 减轻重量 - 厚度对强度的影响 - 热裂 - 复合材料铸件 除砂型铸造之外的其他工艺的铸件设计 79
解决方案:图 1B 和 1C 显示了快速扫描视图和图纸注释的结果,这些视图和图纸注释可以澄清基准 C 并定义基准 A 和 B。结果:对这些图纸进行简单的 GD&T 升级,消除了关于如何设计铸造模具型腔、如何固定铸件以加工成净形状……以及如何设置铸件以进行尺寸检查的不确定性。那么,为了进行准确的加工设置和准确的尺寸检查,应该在铸件的 3 个主要基准上准确接触铸件的哪个位置?由于铸件表面存在不一致(例如,浇口将液态金属带入模腔的切断和研磨表面、模具组件分型面的边缘和拔模斜度),需要定义接触的具体位置以及在这些位置接触铸件的基准目标的大小。答案是定义这些基准目标,这是 ASME Y14.5 – 2018 GD&T 标准的重要组成部分。基准目标消除了在加工夹具设计和首件尺寸检查中接触铸件的确切位置的不确定性。