摘要:这项研究研究了通过以离心机铸造以1500 rpm制造的Al 2 O 3 - Ni复合材料的磁场对Al 2 O 3 - Ni复合材料的影响。al 2 O 3,并将ni功能与水和弱化物结合,均质化,然后将其铸造成被ND-FE-B磁铁包围的多孔石膏模具。由于磁场和离心力的综合效应而导致的三区结构烧结,在还原的大气中烧结,具有不同的Ni含量。SEM,EDX和XRD分析确定了相的分布和组成。硬度测试揭示了最外层区域的最高值,并且逐渐降低了内部区域。采用数字图像相关性的压缩测试显示,与非磁性领域方法相比,抗压强度的较高的内部应力和抗压强度的显着改善。这项研究证实了磁性辅助离心滑移的显着性铸造可显着增强Al 2 O 3 - Ni复合材料的结构,硬度和抗压强度,表明对先进应用的有希望的潜力。
收到21.11.2023;以修订表18.04.2024接受;在线可用12.06.2024摘要本文讨论了铸造行业生产系统脱碳的重要性,以应对气候挑战和对可持续发展的需求不断提高。减少铸造生产中温室气体排放的过程是由多种原因引起的。铸造行业的脱碳是指旨在减少温室气体排放的行动,尤其是二氧化碳(CO 2)。减少二氧化碳排放量越来越被视为世界各地大型和大型铸造厂策略的关键要素。铸造厂是由于熔化和形成金属的能源消耗而产生大量二氧化碳排放的行业之一。几乎没有制造业不使用铁,钢或非有产金属铸造的元素,从铝制成元素到锌。本文介绍了铸造厂可用的各种脱碳策略,例如:使用可再生能源,使用更有效的熔化技术或在整个生产过程中实施低能技术。来自世界各地的应用程序示例说明了这些策略如何已经付诸实践,以及对完全脱碳的潜在障碍和挑战。关键字:脱碳,可再生能源,铸造生产1。简介
第 106 节咨询方会议 #3 铸造厂分支栈桥拆除 2024 年 4 月 22 日 会议记录 出席人员(虚拟):Brian Joyner(NPS-ROCR)、Nick Bartolomeo(NPS-ROCR)、Jamie Euken(NPS-ROCR)、Cortney Cain Gjesfjeld(NPS-ROCR)、Jason Theuer(NPS-NCRO)、Autumn Cook(NPS-ROCR)、Sushma Palmer 博士、Mark Blumenthal、Nick Keenan(Palisades 社区协会)、Matthew Flis(国家首都规划委员会)、Erick C、Hunter Johnson(Colony Hill 社区协会)、Mayor Costello(Glen Echo 镇)、William Hassler、Jessica Amos(美国美术委员会、老乔治敦委员会)、Mary Catherine Bogard(美国美术委员会、老乔治敦委员会)、Cory Peterson(乔治敦大学)、Brett Young、Kirsten B. Kulis(NPS-ACHP)、Joe Massaua(乔治城大学)、Mike、Zach Burt(华盛顿特区保护联盟)、Andrew Lewis(华盛顿特区历史保护办公室)、Peter Harnik(拯救有轨电车栈桥联盟)、Mike Fritz、Pamela Thurber Duncan、Jeff Winstel(华盛顿大都会交通局)、Jim Ashe(华盛顿大都会交通局)、Michael Alvino(华盛顿特区交通局)、Louis Arguello(华盛顿特区水务局)、Ed Blanton、Wayne Savage、Lee Webb(国家首都规划委员会)、Brian Romanowsk、Bob Avery(福克斯希尔公民社区协会)、Don Velsey、委员 JP Szymkowicz(ANC3D)、David Cranor、Kent Arlington、Ann Vroom、Christopher Cody、Alan Salas、Elias Benda(哥伦比亚特区议会)、Gordon、Greg OHare、Karen Hutchins-Keim、Mary Stickles
日常生活中先进复合材料的使用量不断增加,并取代了现有的整体材料。这些复合材料是根据人类的特定应用需求而设计和制造的,也符合标准要求。在本研究中,从农业和工业废弃物中提取的陶瓷增强材料铝金属基复合材料,即AA7075/焊渣和 AA7075/稻壳灰通过液态金属搅拌铸造路线制造,增强材料含量在基体中从 2 到 12(wt.%)不等。测量了 AA 7075 金属基复合材料的机械和微观结构特性,并与基材进行了比较。结果表明,复合材料的机械强度和硬度有所提高。在增强颗粒浓度较高的情况下,冲击能量也显著提高。复合材料的冲击能量在 9% 和 12% 时增加到 3 J,12% 焊渣 MMC 获得的最大抗拉强度为 173 MPa。12% 焊渣 MMC 获得的最高硬度为 98 BHN。此外,微观结构结果反映了搅拌铸造工艺的显著晶粒细化,基质中具有良好的界面特性,农用增强材料颗粒分散均匀。关键词:力学性能;工业废弃物;AA7075;农业废弃物;微观结构分析
作为从研究到商业部署的硅光子学的过渡,有效地将光线融入高度紧凑和功能性的亚微米硅波导的包装解决方案必须是必要的,但仍然具有挑战性。有助于实现大规模集成的220 nm硅在绝缘子(SOI)平台是铸造厂采用最广泛的集成,从而实现了既定的制造工艺和广泛的光子组合库。因此,该平台的高效,可扩展和宽带耦合方案的开发至关重要。利用两光子聚合(TPP)和基于Fermat原理的确定性自由形式的微观启示设计方法,这项工作表明了标准的SMF-28单模式纤维和硅Wave在220 nmSOI SOI平台上的标准SMF-28单模式纤维和硅波波之间的超高效和宽带3-D耦合器界面。耦合器在基本TE模式下达到了0.8 dB的低耦合损失,而1 dB的带宽超过180 nm。宽带操作可实现从通信到光谱的各种带宽驱动的应用。此外,3-D自由形式耦合器还可以极大地容忍纤维未对准和制造可变性,从而使包装要求放松,以降低成本降低资本利用标准的电子包装过程流量。©2024中国激光出版社
铝金属基质复合材料(AMC)是由于其出色的机械性能,轻量级行为和低热膨胀而在汽车和航空航天领域进行不同应用的潜在材料。石墨烯纳米片(GNP)已成为AMC中的首选加固。通过搅拌方法将它们掺入基质中,以生成适合触变的半固体原料。使用L8(2 3)正交阵列的Taguchi设计,检查了Stirrer参数和GNP含量的效果。测试的参数是搅拌速度(300-500rpm),GNP含量(0.3-0.7 wt%)和搅拌时间(5-10分钟)。将GNP /A356复合材料的信噪比(S /N)和硬度用作响应变量。已经确定了三个因素在增强硬度方面的贡献。使用搅拌速度,GNP含量和搅拌时间获得的最佳参数分别为500rpm,0.7Wt。%GNP和5分钟。
摘要:本研究旨在增强农业副产品的增值,以通过溶液铸造技术生产复合材料。众所周知,PLA对水分敏感并在高温下变形,这限制了其在某些应用中的使用。与植物基纤维混合时,弱点是较差的填充 - 马trix界面。因此,通过乙酰化和碱处理在大麻和亚麻纤维上进行表面修饰。将纤维铣削以获得两种颗粒尺寸<75 µm和149–210 µm,并在不同的载荷(0、2.5%,5%,10%,20%和30%)下与聚(乳酸)酸混合,形成复合膜以形成薄膜这些膜的谱图,物理和机械性质。所有薄膜标本都显示出C – O/O – H组,未处理的亚麻填充剂中的π–π相互作用在膜中显示出木质素酚环。注意到,最大降解温度发生在362.5°C。未经处理,碱处理的最高WVP和乙酰化处理的复合材料为20×10 - 7 g·m/m 2 Pa·S(PLA/HEMP30分别为7 g·m/m 2 Pa·S(PLA/HEMP30)。与纯PLA相比,增加填充含量会增加复合膜的色差。碱处理的PLA/亚麻复合材料在2.5或5%的填充物载荷下,其拉伸强度,伸长率和Young的模量显示出显着改善。增加填充物的增加导致吸收的水分显着增加,而水接触角则随着填料浓度的增加而降低。亚麻和大麻诱导的基于PLA的复合膜,载荷为5 wt。载荷显示出更稳定的所有检查特性,并有望提供具有令人满意的性能的独特工业应用。
▪ 在设计凯迪拉克 Celestiq 的底盘框架时,通用汽车采用了所谓的“超精密砂型铸造”技术,通用汽车官员表示,该技术在小批量应用中具有成本和设计灵活性优势。▪ 通用汽车的整个下部结构结合了六个相当大的铸件,包括连接到两个 8 英尺长(2.5 米)铸件的前后结构,这些铸件通过粘合剂粘合并点焊到单个底盘上。▪ CELESTIQ 底盘包括六个大型精密砂型铸造铝部件。▪ 与典型的冲压结构相比,每个铸件可减少 30 到 40 个部件。▪ 其优点是更有效地利用空间、简化结构并提高结构刚度。▪ CELESTIQ 精密砂型铸造材料和工艺非常适合小批量、手工定制的车辆。
摘要:这项研究通过搅拌铸造通过粉煤灰和碳化硅(SIC)钢筋的整合来探索基于铝的复合材料的进步。该过程涉及在700°C的消声炉中熔化合金,逐渐引入粉煤灰和SIC颗粒,同时在450 rpm搅拌12分钟以确保分散体均匀。添加5%SIC和2.5%的粉煤灰导致多种机械性能的显着改善。Tensile强度的显着增强大约增长了约19.56%,而硬度却显示出大约34.67%的大幅增长。此外,疲劳强度显着提高了约26.87%,耐耐磨性的显着增强约为31.45%。这些增强功能强调了整合粉煤灰和SIC钢筋的功效,突出了具有优质机械性能的晚期铝合作材料的潜力。这种方法提出了提高材料性能的有前途的途径,对需要耐用性,强度和耐磨性的各种工业应用产生了影响。