数字化正在大步前进。数字支付在金融交易中的应用不断深入,可能占到所有金融交易的一半以上,因为目前近 70% 的菲律宾成年人都拥有金融账户。菲律宾央行在公共市场和地方交通系统中广泛使用二维码支付,这增加了地方经济活动并支持了金融包容性。例如,在阿拉米诺斯市,据菲律宾央行称,约 700 名市场摊贩和 3,600 多名三轮车司机积极参与了 Paleng-QR Ph Plus 计划。此外,菲律宾央行还计划将该计划扩大到巴格尤、达沃、塔比拉兰、那牙、拉普拉普、帕西格、巴科洛德、维多利亚、曼达维、奥萨米斯、哥打巴托等城市,以及塔拉克的卡米林镇和甲米地的卡莫纳镇。
,由于其独特的先天和适应性免疫特征,在癌症免疫疗法中起关键作用。这些细胞可以分泌细胞因子,包括干扰素G(IFN-G)和肿瘤坏死因子A(TNF-A),并可以通过FAS/FASL和抗体 - 依赖性细胞介导的细胞毒性(ADCC)等机制直接消除肿瘤细胞。与常规的AB T细胞不同,GD T细胞可以独立于主要的组织相容性复合物(MHC)表现和功能作为抗原呈递细胞(APC)靶向多种癌细胞。他们以非MHC限制的方式识别抗原的能力使它们成为同种异体免疫疗法的理想候选者。此外,GD T细胞在达到细胞靶标时表现出特定的组织对流和快速反应性,表明高水平的细胞精度和适应性。尽管有这些功能,但GD T细胞的治疗潜力受到了一些局限性的阻碍,包括它们的丰度有限,不满意的扩张,持久性有限,复杂的生物学和可塑性。为了解决这些问题,基因工程策略,例如使用嵌合抗原受体(CAR)T疗法,T细胞受体(TCR)基因转移以及与GD T细胞参与者的组合。本综述将概述各种工程策略的进步,讨论其前方的含义和挑战,以及未来对单一疗法和组合免疫疗法的工程GD T细胞的指示。
他们的研究揭示了理解旁系同源基因演变的重要性(通过基因复制而产生的)在预测基因组编辑结果中的重要性。CSHL教授和HHMI研究员Zachary Lippman领导了这项研究。“那里有很多很棒的食物作物,”他说。“与'主要的'农作物相比,他们中有多少人没有受益?”
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
©作者2024。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
ImageNet,并将其分类。它可以拍摄狗的图像并将其识别为狗,还是拍摄猫的形象并将其识别为猫?5这个科学家团队找到了一种非常有效的做法
该项目的共同负责人、澳大利亚研究理事会合成生物学卓越中心主任、杰出教授伊恩·保尔森 (Ian Paulsen) 表示:“通过成功构建和调试最终的合成染色体,我们帮助完成了一个强大的工程生物学平台,这可能会彻底改变我们生产药品、可持续材料和其他重要资源的方式。”
宾夕法尼亚州立大学 (PSU) 的研究人员在阿克利工程科学与力学教授 Saptarshi Das 博士的带领下,开发出了基于二维材料的高性能 p 型场效应晶体管 (FET)。这些晶体管是在《自然电子学》杂志上发表的一篇论文中介绍的,是通过一种制造策略创建的,该策略利用了两种二维材料(即二硒化钼 (MoSe 2 ) 和二硒化钨 (WSe 2 ))的掺杂和厚度控制。
从获得诺贝尔奖的 CRISPR 基因编辑方法的突破到 COVID-19 mRNA 疫苗的开发,操纵生物分子的能力已成为过去十年中科学和医学领域最重大的进步之一。这些新生物技术需要精确了解现有的分子机制,才能以可控的方式模拟这些过程。日内瓦大学 (UNIGE)、多特蒙德马克斯普朗克分子生理研究所和杜塞尔多夫海因里希海涅大学的国际团队合作发现了某些致病细菌将致命酶注入宿主的机制的关键细节。对这一过程背后不同步骤的详细分子理解表明 Tc 毒素在生物技术中具有潜在的应用,例如生物医学设备和生物农药。这些研究结果发表在《科学进展》上。
目标。如此规模的增长将提供粮食和营养安全,以及足够的原料,以实现繁荣的生物经济。在认识到整个粮食生产系统的重要性的同时,H2020 CropBooster-P 项目正在起草一份路线图,以开发对欧洲农业未来至关重要的新作物和改良作物,同时考虑到不断变化的地缘政治格局、气候变化和农业优先事项(Baekelandt 等人,2022 年;Harbinson 等人,2021 年)。 CropBooster-P 专家组确定了需要优化以提高作物生产力的关键广泛性状(Baekelandt 等人,2022 年),重点关注提高产量潜力(Burgess、Masclaux-Daubresse 等人,2022 年)、产量稳定性(Gojon 等人,2022 年)和营养质量(Scharff 等人,2021 年)。因此,CropBooster-P 涵盖了所有可识别的性状