将茶碱等救命药与靶向部分进行离子配对,可能会对哮喘持续状态或 COVID-19 引起的纵隔气肿等医疗紧急情况产生重大影响。然而,为了在体内实现快速药物靶向,必须防止离子对在进入靶组织之前分解。本研究旨在调查当茶碱与多胺转运蛋白底物精胺离子配对时,将其插入环糊精 (CD) 中形成三重体,是否可以在静脉注射后将支气管扩张剂选择性地引导至肺部。NMR 表明,三重体形成后,精胺从 CD 腔中突出,这会导致 A549 细胞中的能量依赖性摄取(增强 1.8 倍),持续时间超过 20 分钟。在体内,三联体在大鼠和小鼠体内注射 20 分钟后分别使肺中茶碱增加 2.4 倍和 2.2 倍(p < 0.05)。肺靶向性是选择性的,不会增加大脑或心脏的吸收量,而这些部位的茶碱副作用是治疗限制因素。选择性地将肺中茶碱的浓度加倍可以改善这种治疗指数较窄的药物的效益风险比,这在重症监护中仍然很重要。
区域具有形成次级DNA结构的潜力,对DNA复制产生了频繁且显着的障碍,并且必须积极管理以保持遗传和表观遗传完整性。回复体如何检测和响应二级结构的理解很少。在这里,我们表明,在其C末端区域的真核重置,永恒的港口中叉式保护复合物的核心成分是先前未批准的DNA结合结构域,该结构域表现出与G- Qu-Qudruplex(G 4)DNA结构的结合。我们表明,该域有助于通过G 4形成序列维持过程复制,并具有相邻的PARP结合域的部分冗余。此外,这种永恒的功能需要与解旋酶DDX 11的相互作用和活性。永恒和DDX 11的丧失会导致G 4形成序列和DNA损伤的表观遗传不稳定性。我们的发现表明,永恒有助于重新分散体感知复制障碍G 4的形成的能力,并确保DDX 11通过DDX 11对这些结构的迅速解决,以维持过程中的DNA合成。
G-四链体 (G4) 是一种非规范的 DNA/RNA 结构,在 DNA 复制、 1 a 重组、 1 b 转录调控、 1 c 维持基因组稳定性 1 d 和衰老中发挥重要作用。 1 e G4 形成序列遍布整个人类基因组,但它们在端粒、 2 a 免疫球蛋白转换区 2 b 和原癌基因启动子中最为普遍。 2 c 端粒酶活性在大多数人体细胞中受到抑制,干细胞和淋巴细胞除外, 3 a 但在大多数肿瘤细胞中上调。 3 b 未折叠的单链 DNA 是最佳端粒酶活性所必需的;而 G-四联体的形成会抑制端粒酶活性。 4 因此,G4 结构被认为是阻止
摘要 Sen 和 Gilbert [Nature, (1988) 334, 364- 366] 证实,来自人类免疫球蛋白开关区的富含鸟嘌呤的单链 DNA 能够自我结合形成稳定的四链平行 DNA 结构。拓扑异构酶 11 不会切割单链 DNA 分子。令人惊讶的是,当该 DNA 序列退火为四链结构时,该酶确实会切割相同的 DNA 序列。观察到的两个切割位点与该 DNA 分子与互补分子配对以形成正常 B-DNA 双链时发现的位点相同。这些切割被证实是蛋白质连接的,并且可以通过添加盐来逆转,这表明拓扑异构酶 11 的反应机制正常。此外,由互补寡核苷酸与四链结构结合而形成的八链 DNA 分子也被拓扑异构酶 11 切割,尽管该分子对限制性内切酶消化具有抗性。这些结果表明,单链 DNA 可能具有引导拓扑异构酶 11 到达结合位点的序列信息,但该位点必须以正确的方式进行碱基配对才能做到这一点。四链 DNA 分子能够作为酶的底物这一事实进一步表明,这些 DNA 结构可能存在于细胞中。