重组腺相关病毒(RAAV)是通常用于基因治疗的病毒载体。残留的宿主细胞DNA是一种与感染和致癌性风险有关的杂质。因此,需要对其进行监控以进行质量控制。我们旨在开发针对18S核糖体RNA(RRNA)基因的液滴数字聚合酶链反应(DDPCR)方法,以定量残留宿主细胞DNA。使用两组共享C-末端的启动对确定18S rRNA基因的拷贝数。对于将18S rRNA基因的拷贝数转化为基因组DNA的质量浓度,HEK293基因组DNA中18S rRNA基因的准确拷贝数通过与三个参考基因的拷贝数(EIF5B,DCK和HBB的拷贝数进行比较)确定。结果表明,回收了88.6–97.9.9%的HEK293基因组DNA,被回收到RAAV制剂中。将基于DDPCR的分析应用于RAAV制剂,以定量残留的宿主细胞DNA作为杂质。我们的发现表明该测定可用于RAAV产品中残留宿主细胞DNA的定量和尺寸分布。
SPV的抽象准确和快速诊断对于控制利比亚疾病的快速传播至关重要。本研究旨在优化和开发利比亚阿尔扎维耶市绵羊农场绵羊病毒鉴定的PCR分析。总共收集了120个口头拭子样品,如下:临床怀疑的绵羊痘(n = 67),临床怀疑具有传染性的外生体(n = 18)和健康的绵羊(n = 35)。对收集的样品进行DNA提取,然后进行针对p32基因的聚合酶链反应,该反应用特定的引物。所有67个临床怀疑的绵羊痘样品的SPV呈阳性,并产生预期的扩增子大小为390 bp。所有临床上怀疑的传染性胚膜(CE)样品和健康样品均为阴性。当前基于p32基因的PCR分析的结果表现出良好的敏感性和特异性,可用于分子诊断绵羊痘病毒疾病。关键字。绵羊痘病毒,p32 Gene,PCR,Alzawiyah City,Libya。引言绵羊病是绵羊中最严重,最感染的病毒疾病[1]。在临床上,Sheepox病毒(SPV)可以通过发烧,厌食症,抑郁症,肺部病变发展,无羊毛区域的痘病变的出现以及表面淋巴结肿胀来识别。[2]。SPV是严重的绵羊皮肤病。SPV属于Poxviridae家族的Capripoxvirus(CAPV)属。该属的成员,还包括引起皮肤肿块和山羊痘的病毒,感染绵羊,山羊和牛,并引起经济上重要的疾病(LSDV)[3,4]。绵羊痘病毒是动物的最重要的蛇毒,在OIE的A组疾病中列出[5]。由于对绵羊的羊毛和皮革损害,牛奶产量降低,堕胎率降低,体重增加和高死亡率降低,可能会造成严重的生产损失[6-8]。即使在许多国家中消除了这种疾病,但仍有从北非,中东,西亚,印度和中国在内的世界各地据报道[8,9]。在利比亚,该疾病通常具有enzootic外观。它威胁着农业部门的发展,造成了与羔羊死亡率有关的经济损失,成人的繁殖和生产下降[10]。SPV的诊断通常基于高度特征的临床体征,病毒的分离,中和 - 中和血清学测定[11,12]和聚合酶链反应(PCR)分析[13,11]。用于识别SPV的常规病毒学和血清学测定是耗时,费力的,大多数的特异性低[14]。但是,包括PCR分析在内的分子方法是潜在的工具,可以用作传统实验室技术检测SPV的替代或互补测试。被证明是可靠,敏感,快速和特定的方法,这些方法通常用于世界上许多病毒的检测和表征,包括卡皮托病毒[15,16,12]。[17]。这项研究的目的是创建一种快速,敏感的方法,用于在短时间内检测现场样本中的SPV,从而实用和高效。此外,对于识别SPV的识别,需要进行快速,特异性和敏感测试,因为在现场样品中及时检测SPV对于成功的SPV控制至关重要,并且降低了可能由流行病引起的潜在严重经济损害。方法样本该研究是在利比亚黎波里的利比亚生物技术研究中心(BTRC)的基因工程系进行的。当前的研究总共收集了120件口腔拭子,从可疑的绵羊痘病例中获得了67件,从可疑的绵羊传染性ecthyma(CE)中获得了18例,以及各种羊群中的健康绵羊(阴性对照)的35例。在2013年5月至2014年4月之间,标本是从利比亚阿尔扎维亚市的绵羊群中收集的。使用由英国的公司Isohelix提供的颊拭子管进行了口服拭子样品。随后将这些样品运输到基因工程
目前,使用猪污染的食物成分和或加工食品已成为当前的关注和加强问题。这种情况鼓励开发准确的方法,以特别检测猪污染的存在。本研究使用两种样品:(1)新鲜猪肉作为阳性内部控制和(2)用猪肉(碎肉,肉丸,咸牛肉和香肠)制成的加工肉类产品,这些产品使用DNA标记进行了测试。使用猪肉处理的样品是确定加工对DNA片段的影响,并在所使用的检测过程中测试提取方法的刚性。本研究旨在使用定量聚合酶链反应(QPCR)方法检测猪DNA片段。研究首先使用RNA提取试剂盒,DNA提取试剂盒和盐提取方法提取新鲜的猪肉和加工产品,然后使用分光光度计测量DNA/RNA的纯度和浓度。RNA提取物被转化为互补DNA(cDNA),并与使用QPCR分析的DNA提取物(SUS SCROFA)。结果表明,获得的RNA和DNA提取物的浓度为71.1-296,025 ng/ul,纯度不同。在CT 23-28 ng/ul范围内,所有加工产品和阳性内部的样品都是放大的对照,在这种情况下,肉的加工不会影响分析的加工产品的DNA,因此可以检测到DNA片段。关键字:beta aktin,循环阈值,新鲜猪肉,DNA猪肉,qpcrqPCR DNA在工作时间上比cDNA qPCR更有效,因为它不需要RNA的转录阶段。
摘要:最近发现的Jingmenvirus组包括具有分段基因组的病毒,正极性的RNA以及几种与邻属蛋白酶成员蛋白质较远的蛋白质的蛋白质。据报道,一些Jingmenvirus组成员,即unsshan病毒(ALSV)和Jingmen Tick病毒,是tick传播的人类病原体,可能引起多种症状。ALSV广泛分布在欧亚大陆,但没有可靠的测定可以检测到它的存在。我们描述了用于ALSV检测的QPCR系统。我们的数据表明,该系统可以检测到样品中ALSV的10 4份。该系统没有显示出在欧亚大陆循环的常见tick传播病毒的扩增,即扬孔tick病毒(这是另一个jingmenvirus群体成员)或临床属的一些已知成员。QPCR系统进行了测试,没有ixodes ricinus,I。Persulcatus,Dermacentor reticulatus,D。Marginatus,Haemaphysalis concinna和H. Japonica Ticks的非专业信号。QPCR系统也没有针对人类和绵羊血清的非十个信号。总体而言,此处描述的QPCR系统可用于可靠和定量的ALSV检测。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
专业 /机构原始生效日期:2023年12月12日最新审查日期:2025年1月28日当前生效日期:2023年12月12日,州和联邦授权和健康计划成员合同语言,包括具体的规定 /排除措施,优先于医疗政策,必须首先被视为确定覆盖范围的资格。要验证会员的福利,请联系堪萨斯州客户服务的Blue Cross和Blue Shield。本文包含的BCBSKS医疗政策是为了信息目的,仅适用于通过BCBSK拥有健康保险或由BCBSK管理的自保组计划所涵盖的成员。FEP成员的医疗政策受FEP医疗政策的约束,这可能与BCBSK医疗政策不同。医疗政策不构成医疗建议或医疗服务。治疗医疗保健提供者是独立承包商,既不是堪萨斯州的蓝十字和蓝盾的雇员,也不是诊断,治疗和医疗建议。如果您的患者在不同的蓝色十字和蓝盾计划中涵盖,请参考该计划的医疗政策。
基于摘要的树突状细胞(DC)的免疫疗法已应用于胶质母细胞瘤(GBM);但是,告知反应的生物标志物仍然对回应的理解仍然很差。我们在基于替莫唑胺的化学放疗后,研究了接受TFDC免疫疗法的患者,研究了替莫唑胺的化学疗法并确定预后因素的患者,研究了肿瘤融合的DC(TFDC)免疫疗法。纳入了28名GBM异氯酸盐脱氢酶(IDH)野生型(IDH-WT)的成年患者;给予127次TFDC疫苗注射(4.5±2.6次/患者)。GBM IDH-WT患者的5年生存率(24%)可观,验证了TFDC免疫疗法的临床活性,尤其是针对O 6-甲基鸟氨酸-DNA甲基转移酶(MGMT)非甲基化GBM(5年生存率:33%)。确定影响了用TFDC免疫疗法处理的GBM IDH -WT中总体生存(OS)的新因素,评估了临床参数,并进行了涉及转录组和外来分析的全面分子分析。MGMT启动子甲基化状态,肿瘤切除程度和疫苗参数(给药频率,直流和肿瘤细胞数以及融合比)与TFDC免疫疗法后的存活无关。老年以及术前和术后Karnofsky绩效状况与OS显着相关。肿瘤细胞中的HLA-A-A表达和缺乏CCDC88A,KRT4,TACC2和TONSL突变的缺乏与更好的预后相关。我们验证了TFDC免疫疗法对GBM IDH -WT的活性,包括化学抗性的MGMT启动子未甲基化病例。在GBM IDH -WT中预测TFDC免疫疗法功效的分子生物标志物的鉴定将促进3期试验中的设计和患者分层,以最大程度地提高治疗益处。
1圣乔治大学和圣乔治大学医院NHS基金会信托基金会,英国伦敦,圣乔治大学和圣乔治大学医院; 2曼彻斯特的真菌学参考中心,曼彻斯特学术健康科学中心,Wythenshawe医院,曼彻斯特大学NHS基金会信托基金会和进化论,感染与基因组学部,英国曼彻斯特大学生物学,医学与健康学院; 3意大利罗马的Superiore Di Sanita Instituto Superiore Di Sanita Instituto Superiore Di Sanita系感染,寄生和免疫介导的疾病系; 4Unitéde MycologieMoléculaire,法国巴黎的巴斯德研究所; 5英国加迪夫大学感染,免疫和生物化学系和医学院; 6巴黎大学,寄生虫学杂志实验室,HôpitalSaint-Louis,APHP,巴黎,法国; 7新南威尔士州临床病理学与医学研究所,新南威尔士州健康病理学研究所,澳大利亚威斯特米德医院,临床病理与医学研究所,临床病理与医学研究所,临床病理与医学研究所; 8亨利·蒙多医院的血液学和干细胞移植部门和法国克里蒂尔大学的巴黎 - 最佳克雷特尔大学; 9 Fungal PCR倡议,意大利维罗纳国际人类和动物真菌学会的工作组; 10 Med。诊所II,Caritas Hospital Bad Mergentheim,德国; 11英国格拉斯哥大学感染,免疫和炎症研究所; 12 Karolinska Institutet,瑞典斯德哥尔摩的Karolinska大学医院实验室医学系; 13 Medizinische Klinik II,LaborWü4i,Universitätsklinikumwürzburg,德国; 14临床微生物学学科,都柏林三一学院,爱尔兰都柏林圣詹姆斯医院校园; 15曼彻斯特大学NHS大学NHS基金会信托基金会,曼彻斯特大学的曼彻斯特真菌参考中心和传染病系,曼彻斯特Wythenshawe医院;威尔士大学医院公共卫生医院Cardiff公共卫生参考实验室和16个公共卫生健康参考实验室,威尔士大学医院和试验中心研究/感染与免疫部,加迪夫大学,英国加的夫大学诊所II,Caritas Hospital Bad Mergentheim,德国; 11英国格拉斯哥大学感染,免疫和炎症研究所; 12 Karolinska Institutet,瑞典斯德哥尔摩的Karolinska大学医院实验室医学系; 13 Medizinische Klinik II,LaborWü4i,Universitätsklinikumwürzburg,德国; 14临床微生物学学科,都柏林三一学院,爱尔兰都柏林圣詹姆斯医院校园; 15曼彻斯特大学NHS大学NHS基金会信托基金会,曼彻斯特大学的曼彻斯特真菌参考中心和传染病系,曼彻斯特Wythenshawe医院;威尔士大学医院公共卫生医院Cardiff公共卫生参考实验室和16个公共卫生健康参考实验室,威尔士大学医院和试验中心研究/感染与免疫部,加迪夫大学,英国加的夫大学
胃。4个临床体征包括反流,腹泻,体重减轻,以及通常是猝死。3,4,6,9的组织学变化可以包括预脑炎,粘膜增生和腺体发育不良。5也已记录了MO感染与预脑脑腺癌之间的关联。5个可变的粪便脱落使得对虫的MO诊断具有挑战性。最常见的原反长期诊断是粪便的显微镜检查,包括直接湿坐骑,革兰氏染色,Romanowsky污渍,宏观求和技术和迷你链球菌技术。1,3,4,7,9,11,12但是,这些微观技术有局限性。微观诊断需要完整的MO生物体,这些生物可能并不总是显而易见的。间歇性脱落还可以排除受感染鸟类中生物体的粘性。7此外,可能会误认为碎屑和大的丝状,革兰氏阳性细菌,而这种生物并不总是染色或固定在幻灯片上。3,4,13,以帮助应对这些挑战,最近使用了泄殖腔拭子和粪便的PCR。PCR有许多优势:它可以从少量DNA中检测到MO,它不需要完整的生物进行诊断,并且与微观粪便相比,它具有提高的诊断敏感性。3,7在一项研究中,来自MO感染的Budgerigars的7个常规PCR诊断MO的可能性是粪便革兰氏染色的2.38倍。4但是,这些该生物的18S rRNA和结构域D1/D2区域最初用于从本质上鉴定为酵母。14已使用嵌套和半固定的PCR方法进行了传统的PCR,以放大该D1/D2区域,18S rRNA,内部转录垫片和日本宠物鸟类粪便中的1个区域。15粪便PCR可以具有限制,包括细菌DNA降解和粪便抑制剂16;但是,这种诊断有能力提供一种简单的无创方法来测试MO的鸟类,尤其是在大型鸟类环境中。除了显微镜和分子诊断外,MO培养还进行了培养,但由于特定和挑剔的生长需求而具有挑战性。17在传统真菌媒体上培养Mo的努力并没有成功,但是在微型自毒环境中,MO已成功地使用特定媒体和某些环境条件进行了培养。17根据文献,目前尚无研究表明MO已在培养中维持,或者已经进行了广泛的反抗易感性测试。实际上,没有私人实验室和美国类型文化收藏(ATCC)具有可用的MO文化。无法维持可持续的文化对发病机理,抗真菌敏感性和系统发育多样性的研究有限。由于某些设施中的鸟类发病率高和差异率很高,因此需要有效的MO治疗选择。常用的治疗方法包括两性霉素B(通过口腔膨胀或饮用水),苯甲酸钠(通过饮用水)和Nystatin(通过饮用水)。