恒温扩增核酸检测技术因其耗时短、对扩增 设备要求低和引物探针商品化合成稳定等优势 , 在 病原快速检测技术中脱颖而出。 Piepenburg 等 [ 13 ] 参 照 T4 噬菌体 DNA 复制系统于 2006 年创建了一种新 型等温扩增技术 , 使用酶来打开双链 DNA, 该技术 称为重组酶聚合酶扩增 (Recombinase polymerase am- plification, RPA) 。随后发明的重组酶介导链置换 核酸扩增技术 (Recombinase-aid amplification, RAA) 技术原理与 RPA 类似 , 不同之处在于 RAA 的重组酶 来源于细菌或真菌 , 而 RPA 的重组酶来自 T4 噬菌 体。 2017 年 [ 14 ] 结合以上重组酶 , SHERLOCK (Specifi- chigh-sensitivity enzymatic reporter unlocking) 检测 方案问世 , 并应用于新冠病毒的检测技术开发 [ 15 ] , 该技术通过改造规律间隔成簇短回文重复序列及 其关联蛋白 (Clustered regularly interspaced short pa- lindromic repeats/CRISPR-associated proteins system, CRISPR/Cas) 系统 , 使其能够识别特定的严重急性 呼吸综合征冠状病毒 2 (Severe acute respiratory syn- drome coronavirus 2, SARS-Cov-2) 基因组片段 , 1h 就能确定检测结果 , 检测限可低至 2 amol/L 。 SHER- LOCK 技术特异和简便 , 将 SHERLOCK 与 RAA 整合 集成 , 能够凸显两者的优势 , 不仅可以实现靶标核 酸的快速扩增 ( 保留等温扩增技术的优势 ), 还增强 了检测特异性。
△通讯作者,电子邮件:xieqibing1971@163.com tractramp a摘要】客观YKL-40,也称为Chitinase-3-like-1(CHI3L1),是人类软骨糖蛋白-39,是N-末端,其N-末端由酪氨酸(Y)(Y),Lysine(y),Lysine(k),Lysine(k),k),lysine(k),k)和lecine(k),k) YKL-40。在这项研究中,我们探讨了YKL-40是否可以促进肺泡上皮细胞中炎症因子的表达。方法A549细胞在体外用白介素(IL)-1β(20 ng/ml),IL-6(20 ng/ml),肿瘤坏死因子-Alpha(TNF-α)(20 ng/ml)(20 ng/ml)和Interferon-gamma(Interferon-gamma(Ifn-γ)(IFN-γ/ml)。通过RT -QPCR确定YKL -40转录的表达。A549细胞,YKL-40蛋白的表达通过蛋白质印迹确定。A549细胞在0、100、500和1000 ng/ml的重组YKL-40蛋白培养,IL-6和IL-8的表达水平。设计并分别用于转染A549细胞,三对靶向YKL-40(SI-YKL -40-1/2/3)和阴性对照(NC)的三对小型RNA,分别用于转染A549细胞,并通过RT-QPCR和Western Blot确定YKL-40的表达。si-ykl -40-3被筛选出来以进行后续实验。在A549细胞中,转染Si-YKL -40-3和Si-NC,然后添加IL-1β(20 ng/ml)进行培养。通过RT-QPCR确定YKL -40,IL -6和IL-8的表达,并用QAH-INF-1 KIT测量上清液中多个因子的表达。结果RT-QPCR结果表明,与对照组相比,IL-1β可以上调YKL-40蛋白转录水平,并且差异具有统计学意义(p <0.01),但是IL-6,TNF-α和IFN-γ无法上调YKL-40蛋白质转录水平。Western印迹结果表明,IL-1β(20 ng/ml)可以显着促进YKL-40的表达,并且与对照组相比,用不同浓度的IL-1β进行处理的差异均具有统计学意义(P <0.01)。在将人类重组YKL-40蛋白添加到A549细胞中后,结果表明,与对照组相比,炎症因子IL-6和IL-8的表达显着增加,并且差异在统计学上显着(p <0.05)。通过SI-YKL -40-3转染降低YKL-40的表达后,IL-6(P <0.05)的表达(P <0.05),IL-8(P <0.05)和其他炎症因子被抑制与
简而言之,绿氢是利用可再生能源将水分解成氢和氧而产生的。燃烧时只会排放水,但生产氢气的成本可能很高。绿氨由绿氢制成,该过程也由可再生能源提供动力。生产绿氢和绿氨对环境和社会有积极和消极的影响。绿氢(见表 14.1)被视为全球向可持续能源和净零排放经济转型的关键推动因素。开发绿氢作为清洁能源解决方案的势头日益增强。它正在成为一种储存可再生能源的主要选择(其他能源储存选择另见第 13 章),氢基燃料可以长距离运输——从能源资源丰富的地区运输到数千公里外的能源匮乏地区。作为一种液体燃料,以绿色氢为原料的绿氨作为运输媒介具有许多优势。在联合国气候大会 COP26 上,绿色氢能被列为多项减排承诺的一部分,作为重工业脱碳的手段,并可作为长途货运、船运和航空燃料。各国政府和工业界都承认氢能是净零经济的重要支柱 1。联合国旨在降低绿色氢能成本的倡议“绿色氢能弹射器”宣布,其绿色电解槽目标将从 2020 年设定的 25 吉瓦增加近一倍,达到 2027 年的 45 吉瓦。欧盟委员会通过了一系列立法提案,旨在通过促进氢气等可再生和低碳气体的使用来实现欧盟天然气市场的脱碳,并确保所有欧洲公民的能源安全。阿拉伯联合酋长国的新氢能战略旨在到 2030 年占据全球低碳氢能市场的四分之一。最近,日本宣布将从其绿色创新基金中投资 34 亿美元,用于加速绿色氢能的研发和推广。未来 10 年氢气的使用情况 2 。预计到 2040 年,鉴于可再生能源规模扩大、成本降低,以及生产棕色、灰色和蓝色氢气的成本增加,绿色或低碳氢气将具有成本竞争力 3 。来自核能的粉红氢气是未来氢气生产的另一种选择 4 。绿色氨的生产被推广为向净零二氧化碳排放过渡的另一种选择。它在这方面的用途包括:
氨氧化古细菌(AOA)是微生物群落的无处不在成分,并在某些土壤中占据了硝化的第一阶段。当我们开始了解土壤病毒动力学时,我们对那些感染硝基菌的人的组成或活性或其影响过程的潜力不了解。这项研究旨在表征在两种硝化pH的硝化土壤中感染自身噬菌AOA的病毒,这是通过通过DNA稳定的异位素探测和化合物分析转移了同化的CO 2衍生的13 C从宿主到病毒的13 C。将13 C掺入低GC MOL%AOA中,病毒基因组增加了CSCL梯度中的DNA浮力密度,但导致与富含非增强的高GC MOL%基因组共同移民,减少了测序depth和Contig组装。因此,我们开发了一种杂种方法,其中AOA和病毒基因组是从低浮力DNA组装而成的,随后映射13 C同位素富集的高浮力密度DNA读取以识别AOA的活性。元基因组组装的基因组在两种土壤之间是不同的,并且代表了广泛的活性种群。识别64个AOA感染病毒运营分类单元(投票),与先前特征的原核生物病毒没有明确的相关性。这些投票在土壤之间也有所不同,其中42%的富含宿主的13 C富集。大多数人被预测为能够溶裂性,辅助代谢基因包括一种AOA特异性多孔氧化酶,表明感染可能会增强对中央代谢功能所必需的铜摄取。这些发现表明AOA的病毒感染可能是硝化过程中经常发生的过程,可能会影响宿主生理和活性。
( 1 ) Fabriz S, Mendzheritskaya J, Stehle S: 高等教育中同步和异步在线教学设置对学生在新冠疫情期间学习体验的影响。Front Psychol. 12: 733554, 2021 ( 2 ) Sattler A, Dunn J, Albarran M 等:初级卫生保健系统中异步与同步筛查抑郁和自杀倾向:质量改进研究。JMIR Ment Health. 11: e50192, 2024
地址通信到:HSING-CHANG NI,精神病学系,Linkou Chang Gung Gung Memorial Hospital,No.5,Fusing
氨扩建项目是一项在 CSBP 有限公司的奎那那工业园区 (CSBP Kwinana) 内建造和运营新氨厂 (氨厂 3 或 AP3) 的提案。CSBP Kwinana 位于奎那那工业区 (KIA),距离西澳大利亚 (WA) 珀斯以南约 40 公里 (km)。该提案的提议者是 CSBP 有限公司。该提案将使用来自丹皮尔至班伯里天然气管道 (DBNGP) 的天然气,结合 10 兆瓦 (MW) 电解器的氢气生产来制造氨,供 CSBP 用于制造其他化学产品或对外出售给客户。该提案包括一个自给自足的设施,生产能力约为每年 300,000 吨 (tpa)。该提案涉及清除 27.52 公顷 (ha) 开发范围内不到一公顷的再生原生植被。