前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。
,我们使用过去二十年(直到2023年10月)发表的文献进行了一项广泛的研究,涉及将SCFA与肌肉减少症和2型糖尿病的发展联系起来的复杂机制。美国国家医学图书馆(PubMed),科学和中国国家知识基础设施(CNKI)是电子数据库,用作与我们主题相关的相关文章的来源。选择了2003年1月1日至2023年10月1日之间发表的研究,以避免任何过时的数据。我们使用了以下关键词的不同组合:“肠道菌群”,“短链脂肪酸”,“胰岛素抵抗”,“ 2型糖尿病”,“肌肉减少症”,“免疫学途径”,“疾病途径”,“ dosbibiosis”和“治疗”和“治疗”。包括各种文章类型,例如临床试验,随机对照试验,多中心研究,评论,准则和荟萃分析。我们主要通过标题和摘要筛选了这些文章。之后,我们继续进行全文评估。本叙事评论的重点是三个主要关键点。从所选文章中提取的所有相关信息均以文本形式汇总。首先,我们总结了肠道微生物群的组成变化与2型糖尿病和肌肉减少症的发展之间的新联系,尤其是SCFAS生产降低对它们的影响。之后,我们展示了这些病理变化如何导致2型糖尿病患者的肌肉减少症。这篇评论的最后一部分侧重于潜在的治疗选择。筛选过程如图1。回顾了文献和课程内容的类型后,本综述包括51项研究(图1)。
淀粉原产于两种不同的成分,即淀粉症和淀粉蛋白。这两个分子由葡萄糖分子组成,但不同的链氨型分子是大型且分支的分子,而淀粉症基本上是直且长的分子。淀粉分子中的直链是由淀粉语法(SS)合成的。Granul -Bound淀粉语法(GBSS)建立了链淀粉的链,而可溶性淀粉语法(SSS)则建立了在淀粉蛋白中发现的链条。淀粉分子的分支由分支酶(SBE)合成。sss以各种形式(i- We)提供,其功能与它们构建不同长度的链球链链的事实略有不同。在马铃薯线中,应用程序包括GBS,SSS和SBE已突变或激活以改变淀粉含量以及链链淀粉蛋白的链长和分支。
简单地说,绿色氢是通过使用可再生能量将水分成氢和氧气而产生的。绿色氨是由绿色氢制成的,其工艺也由可再生能源提供动力。绿色氢和氨的产生既有正面和负面的环境和社会影响。绿色氢(见表11.1)被视为全球向可持续能量和净零排放的全球温室自由能的主要载体。动量正在增长,以快速扩大绿色氢的产生,以满足IPCCC GHG减少靶标。它正在作为存储能源的一种选择(另请参阅第13章,有关其他储能选项),从具有基于氢的燃料的可再生能源可能会在长途运输(从拥有丰富能源资源的地区到数千公里远的地区)。以绿色氢的形式采用的绿色氨与绿色
奖项#DE-EE0006536 DOE总资金:$ 1,182,789首席研究员:Adrienne Lavine与K Lovegrove(IT Power Australia),P Kavehpour,R Wirz,Sepulveda,A Sepulveda,H Aryafar,H Aryafar,D Simonetti 3 Simonetti 3
•传统公用事业系统(图中间)。发电厂为电网产生电力。可以将一些热量用于地区供暖或工业系统。核电站可能包括储热,因此它们以基础负载运行,电网可变。核电站传统上是基本负荷(高资本成本,低运营成本)。历史上,化石植物提供可调节电力(低资本成本,更高的燃油成本)。风和太阳能可以提供电力,但只有在太阳熄灭并且风吹来时才可以提供电力。•低价电力消耗(图顶)。大规模风和太阳能在某些时候会导致过量产量。在某些时候,大量的核能产生过多的生产能力。在每种情况下,这种电力的燃料成本都非常低。需要有效地使用所有这些电力的方法。我们显示使用过多的电力将火砖加热到高温 - 最低的高温储热材料。通过吹冷空气来恢复热量,以产生热空气,这与燃烧化石燃料相同。这种热空气可用于发电(包括具有热力学顶循环的核电站),工业热和商业热量。这可以直接更换化石燃料。如果排气热量储存,可以燃烧储存的化石燃料,生物燃料或氢气以提供高温热。廉价的供热存储可以为电力设定最低价格。•产生氢(图的底部)。在低碳经济中,全球产量可能超过电力产量的一种能源产品是氢。这是化学过程中使用的氢:氨(肥料的产生),将铁矿石转化为替代焦炭和纤维素碳氢化合物燃料的生产,以替代所有原油。这解决了运输市场和能源存储挑战。潜在需求可能超过每年7.5亿吨氢。生产这么多氢将需要3200 GWE的核或200万平方英里的风电场,或将全球天然气的一半生产转换为氢气的一半,并通过隔离二氧化碳二氧化碳。这假设没有氢被燃烧为能源。可以将电力输出从核氢的产量转换为GIRD,从而提供3200 GWE的可调度电力,并通过存储从存储中氢提供,以维持工业设施的运行。