摘要 — 飞机驾驶舱内的通信目前基于有线或射频连接。例如,已经引入无线技术来支持平板电脑。然而,射频技术的使用仍然有限。例如,耳机的无线连接在舒适性和灵活性方面对飞行员来说是一个优势,但也存在一些问题,尤其是射频干扰和音频数据安全问题。基于可见光或红外线的光学无线通信为克服这些问题提供了有趣的可能性。事实上,由于光束被限制在环境中,这项技术可以抵御攻击风险,从而提高安全性。此外,射频免疫可确保没有干扰,从而为通信提供更多资源。本文首次在文献中采用模拟方法研究了飞机驾驶舱内飞行员耳机连接的光学无线信道,并根据给定链路可靠性可实现的最大数据速率确定了其性能。索引术语 — 光学无线通信;红外传输;信道建模。
摘要 — 飞机驾驶舱内的通信目前基于有线或射频连接。例如,已经引入无线技术来支持平板电脑。然而,射频技术的使用仍然有限。例如,耳机的无线连接在舒适性和灵活性方面对飞行员来说是一个优势,但也存在一些问题,尤其是射频干扰和音频数据安全问题。基于可见光或红外线的光学无线通信为克服这些问题提供了有趣的可能性。事实上,由于光束被限制在环境中,这项技术可以抵御攻击风险,从而提高安全性。此外,射频免疫可确保没有干扰,从而为通信提供更多资源。本文首次在文献中采用模拟方法研究了飞机驾驶舱内飞行员耳机连接的光学无线信道,并根据给定链路可靠性可实现的最大数据速率确定了其性能。索引术语 — 光学无线通信;红外传输;信道建模。
简介和问题陈述 数据链路主要是飞机和地面站(如空中交通管制员或航空公司)之间的双向通信,用于交换数字信息。目前,最常见的情况是,当传统的模拟语音通信不再可能时,通常是在穿越海洋环境时,才会使用数据链路。未来的空中交通管理 (ATM) 环境不再完全依赖模拟语音消息来交换信息。毫无疑问,无论是下一代空中交通服务 (ATS) 还是航空运营通信 (AOC),从模拟语音到以数字数据通信为主的过渡都将迫在眉睫。此外,随着对机上娱乐 (IFE)(例如航空乘客通信 - APC)应用(如客舱互联网)的需求不断增长,使用永久数据链路已成为满足用户请求的必要条件。
星际距离非常遥远。电磁传播延迟与距离成正比,传播功率损耗与距离的平方成正比。这些对于星际航天器和探测器的通信来说都是严峻的挑战。那些发射此类任务的人可能希望在人的一生或成为太空科学家或工程师的职业生涯中取得科学成果。这导致这样的结论:此类飞行器或探测器必须以光速 c 的很大一部分行进。这反过来又需要大量能源来传递高动能,这使得质量预算较小的航天器或探测器更加珍贵。然而,总质量较小意味着分配给通信子系统的质量更少。这使得获得重大科学回报变得困难,而这在一定程度上是由科学数据的数量和可靠性决定的。在本教程白皮书中,我们讨论了在质量预算受限的情况下,围绕星际距离航天器或探测器通信下行链路设计的各种问题。
移动平台之间的量子网络可实现安全通信、分布式量子传感器和分布式量子计算。随着未来量子互联网的不断进步,将移动平台(例如无人机、智能车辆、船舶和飞机)连接到量子网络仍然是一项挑战。例如,现实世界移动平台的工程约束要求量子系统具有小尺寸、小重量和小功率 (SWaP)。此外,必须将单光子路由到运动中并经历振动的平台。在此努力中,我们讨论了在多种配置(无人机到无人机、无人机到移动车辆和车辆到车辆)中开发和展示移动无人机和车辆平台之间的量子通信链路(包括诱饵态量子密钥分发 (QKD))的进展。我们将讨论和分析关键子系统,包括基于谐振腔发光二极管 (LED) 的诱饵态 QKD 源、紧凑型光学系统设计、指向、采集和跟踪 (PAT) 子系统、单光子探测器、基于现场可编程门阵列的时间标记器以及新颖的时间同步算法。此外,我们还介绍了系统性能,包括在多种条件下的跟踪性能和移动平台配置。
摘要在2021年,美国能源部(DOE)开始了能源大地倡议,以在未来10年内加速可靠的清洁能源解决方案的突破。在2022年,美国能源部地热技术办公室(GTO)询问了国家可再生能源实验室(NREL),以为开发增强的地热系统(EGS)的能源地面靶标提供分析,该储层是人为的地下储层,这些储量从地球上从地球上提取电力的热能,以发电和/或热量或加热或加热应用。增强的地热射击分析基于2019年GTO报告Geovision中的技术假设:利用我们脚下的热量。对于Earthshot,我们根据最近的技术进步更新了一些技术成本和性能假设,并更新了EGS资源潜力,以包括更详细的分析。我们使用了更新的EGS供应成本曲线来预测使用能力扩展模型到2050年在美国部署的地热发电量。结果用于为EGS开发成本目标。2022年9月8日,宣布了增强的地热射击。其目标 - 将EG的成本降低90%,到2035年每兆瓦$ 45。本文总结了增强的地热拍摄中使用的成本和资源假设。它描述了区域能源部署系统(REEDS)容量扩展模型中使用的假设,以预测地热部署并讨论结果。1
– 奥地利空间局 (ASA)/奥地利。 – 比利时联邦科学政策办公室 (BFSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展署 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – KFKI 粒子与核物理研究所 (KFKI)/匈牙利。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 国家信息通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
简介:下一代无线网络将依靠更小的蜂窝和更大的带宽来增加容量。通过保持无线电头硬件简单,光纤无线电技术可以实现这种密集的基站网络。利用硅光子技术实现基站硬件的小型化,可以降低尺寸和成本。对于微波光子应用,氮化硅 (SiN) 平台提供损耗极低的波导和一些最好的集成滤波器。然而,随着转向更高的载波频率,在毫米波和太赫兹频段,对光电二极管带宽的要求也会增加。当前的 SiN 平台缺少这种光电二极管,因此阻碍了高频微波光子应用。[1] 我们展示了一种 300 GHz 的通信链路,该链路由 SiN 上的异构集成单行载波 (UTC) 光电二极管作为发射器中的光电换能器实现。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
该作品保存在航空热力学研究所的研究所图书馆中,供公众阅读,并且该作品被记录在研究所网站和大学图书馆的在线目录中。后者意味着作品的书目数据(标题、作者、出版年份等)在全球范围内永久可见。为此,在工作完成后,除了校样外,我还会向我的导师提交另一份印刷版和一份数字版。我将这些附加版本的所有权转让给斯图加特大学,并授予航空热力学研究所出于研究和教学目的对本作品以及我在本作品范围内产生的工作成果的免费、时间和空间不受限制的简单使用权。如果本院就该作品与第三方订立了使用权协议,则该协议同样适用于该作品范围内产生的工作成果。