摘要 — 快速稳定锁相环 (PLL) 在许多需要快速获得稳定频率和相位的应用中起着关键作用。在现代通信标准中,这些 PLL 被广泛用于确保精确符合动态资源分配要求。在处理器中,这些 PLL 管理动态电压频率缩放。此外,快速稳定 PLL 加快了复杂电子雷达装置中频谱的扫描速度,这对成像和扫描雷达应用特别有利。这些 PLL 所表现出的快速响应也被用于量子技术,满足了对精确频率调整以有效操纵量子比特状态的迫切需求。本文将实现快速稳定 PLL 的策略主要分为五大类技术:增强型相位频率检测、混合多子系统、VCO 启动、变速和查找表或有限状态机。本文探讨了这些技术的基本操作原理,并介绍了文献中报道的每种方法的最佳稳定时间。最后,将根据这些技术的品质因数 (FoM)、稳定时间和调谐范围对采用这些技术的架构进行评估。
信号发生器是一种用途广泛的重要电子测试仪器,可用于蜂窝通信、雷达系统、微带天线和电子实验室等各个领域。本研究重点是模拟和设计工作频率范围为 35 MHz 至 3 GHz 的低相位噪声信号发生器。为此,使用 Arduino 板上的 Atmega 328P 微控制器来控制基于锁相环 (PLL) 概念的合成器。评估了信号发生器的性能,特别强调预测和分析 PLL 组件产生的相位噪声。为确保系统稳健,设计了三阶环路滤波器以有效抑制杂散。通过使用 ADIsimPLL 仿真工具进行仿真,获得了环路带宽 (10 kHz) 和相位裕度 (45°) 的最佳值。为此实现所选的锁相环芯片是 ADI 公司生产的 ADF4351。通过进行瞬态分析,确定了 PLL 系统从最小输出频率过渡到最大输出频率所需的时间。此外,使用阴极射线示波器研究了 35-100 MHz 频率范围内的发生器信号特性,并使用频谱分析仪研究了 101-3000 MHz 频率范围内的发生器信号特性。计算了不同频率(35 MHz、387 MHz、1 GHz、2 GHz 和 2.9 GHz)下的相位噪声水平,并在不同的偏移量(1 kHz、10 kHz、100 kHz 和 1 MHz)下进行了分析。相比之下,实验结果表明相位噪声水平高于通过模拟获得的结果。值得注意的是,随着输出频率的增加,相位噪声也相应增加。