使用高级安全和宾客增强技术的组合进行了设计,Vingcard小说代表电子锁的未来是酒店的未来,这是一个以上的原因。Vingcard小说是一种具有美观的产品,具有现代有力的电子产品,可以在客户需要时启用我们的移动访问和在线技术。使用可持续制造材料,Vingcard小说负责认真保护环境。
客观概述,实验设置,结果和讨论…….................................................................................................................................................................................................................................................................................................................................................................16辐照设施和设置…………………………………………………………………………20 Single Event Latchup Results & Discussion…..………………………………... 21 ADS9818………………………………………………………………………………... 25 Device & Test Board Information…………..…………………………………… 25 Testing Facility & 设置…………..…………………………………………。…。27闩锁复制结果和讨论…..………………………………………………………………………………………………………………………………………………………………………………………………………………………………… 设置…………..……………...………………………。…。30单个事件闩锁结果……………………………………………………………………………………………………………………………………………………………………………………………32
• VID V62/23607-01XE • 抗辐射 – 单粒子闩锁 (SEL) 在 125°C 时可抵抗 43 MeV- cm2/mg – ELDRS 无影响至 30krad(Si) – 每晶圆批次的总电离剂量 (TID) RLAT 高达 30krad(Si) – TID 特征值高达 30krad(Si) – 单粒子瞬变 (SET) 特征值高达 43 MeV-cm2 /mg • 电源范围:+8V 至 +22V • 集成断电和过压保护 – 过压和断电保护高达 +60V – 冷备用能力高达 +60V – 可调节故障阈值 (V FP ) 从 3V 到电源 – 中断标志反馈指示故障通道 – 非故障通道继续以低漏电流运行 • 闩锁免疫结构 • 精密性能,源极关断漏电流(最大值)为 ±4.5nA,关断电容为 4pF • 航天增强型塑料 – 工作温度范围为 –55°C 至 +125°C – 受控基线 – 金线和 NiPdAu 引线涂层 – 一个装配和测试站点 – 一个制造站点 – 延长产品生命周期 – 产品可追溯性 – 增强型模塑料,具有低释气性 • 小型、行业标准 TSSOP-20 封装
作者:A Cook · 2020 · 被引用 4 次 — LaMSA 系统加载至弹簧位移 ymax,该位移由加载电机和弹簧力相等计算得出。B-C 解锁和解锁过程中的动态...
与大型语言模型(LLM)相关的碳足迹是一个非常关注的问题,包括其培训,推理,实验和存储过程中的排放,包括运营和体现的碳排放。一个重要方面是准确地估算出新兴LLM的碳影响,甚至在训练之前,这在很大程度上依赖于GPU使用。现有研究报告了LLM培训的碳足迹,但只有一种工具MLCO2可以预测进行体育锻炼之前新神经网络的碳足迹。但是,MLCO2有几个严重的局限性。它不能将其估计扩展到浓密或混合物(MOE)LLMS,无视关键的体系结构参数,仅关注GPU,并且无法建模固定的碳足迹。解决这些差距,我们引入了llmcarbon,这是一种端到端的碳足迹投影模型,均为密集和Moe LLMS设计。与MLCO2相比,LLMCarbon显着提高了各种LLM的碳足迹估计的准确性。源代码在https://github.com/sotarokaneda/mlcarbon上发布。
TL7700-SEP 中主要的单粒子效应 (SEE) 事件是单粒子闩锁 (SEL)。从风险/影响的角度来看,SEL 的发生可能是最具破坏性的 SEE 事件,也是太空应用的最大隐患。TL7700-SEP 使用了双极工艺 JI1。CMOS 电路可能会产生 SEL 和 SEB 敏感性。如果高能离子通过引起的过量电流注入足以触发寄生交叉耦合 PNP 和 NPN 双极结构的形成(形成于 p-sub 和 n-well 以及 n+ 和 p+ 触点之间),则可能会发生 SEL。单事件引发的寄生双极结构在电源和接地之间形成高电导路径(产生通常比正常工作电流高几个数量级的稳态电流),该路径持续存在(“锁定”),直到断电或设备被高电流状态破坏。TL7700-SEP 在重离子 LET EFF 高达 43 MeV-cm 2 /mg 时未表现出 SEL,通量为 10 7 离子/cm 2 且芯片温度为 125°C。
摘要 - 数字转换器(ADC)用于从工业仪器到现代通信系统的许多应用中。ADC中存在的基本构建块是CMOS比较器,该比较器负责比较两个或多个信号。动态CMOS比较器是低功率应用程序中首选的功能效率。文献中存在许多动态CMOS比较架构。这项工作介绍了动态偏置比较器的设计和仿真结果。此比较器在180 nm的CMOS过程中设计,并由1.8V电源提供动力。在100 MHz时钟时,该比较器的功耗为每次比较10 fj。另外,蒙特卡洛(MC)模拟结果表明,该比较器的输入偏移为1.93 mV。
本文介绍了纳米 - 卫星外部太阳辐射系统的单个事件闩锁检测(SEL)检测。在这项研究中,使用电路测试和仿真进行了SEL检测分析。电力子系统(EPS)是所有立方体总线子系统的一部分,它包括太阳阵列,可充电电池和电源控制和配电单元(PCDU)。为了提取太阳阵列产生的最大功率,需要一个峰值功率跟踪拓扑。这可能会导致SEL,并存在太阳能产生的高压。要克服SEL问题,必须进行电路测试和仿真,以便可以轻松检测和减轻SEL的流动。使用的方法是使用微控制器,将在特定时间内创建SEL。可编程的集成电路(PIC)用于减轻SEL效果。表明,SEL发生在特定时间内非常快。当使用Spenvis进行仿真时,结果显示,仅在UITMSAT-1上影响单个事件障碍(SEU)。
基于缩放晶体管的抽象CMOS电路通常比采用大面积对应物的电路更容易受到辐射环境中能量颗粒引起的软误差的影响。在本文中,在Schmitt触发器上构建了一个软误差闩锁,它完全用NMOS晶体管实现,并提出了额外的电压助推器(我们称为NST-VB)。为了评估电路的辐射弹性,我们通过分析各种闩锁内部敏感节点的临界电荷来识别最敏感的节点。我们还检查了必需闩锁的线性能量传递(LET),并观察到NST-VB闩锁具有0:386mevcm 2 = mg的提高LET,与0:231mevcm 2 = mg和0:365mevcm 2 = mg 2 = mg 2 = mg 2 = mg 2 = mg,分别为latch and latch and st latch。在过程变化分析中,我们进一步检查了5K蒙特卡洛模拟,以分析设备可变性对我们的设计的影响,并观察到所提出的NST-VB闩锁具有1:96关于ST LATCH的可变性较小的关键电压。此外,NST-VB闩锁的逻辑闪烁概率为48.32%,而ST闩锁的逻辑概率为53.04%。此外,与其他考虑的闩锁相比,计算并评估了拟议闩锁有效性的功率延迟面积比(QPAR)的关键电荷。
晶体管需要低电源电压,因此不幸的是,电路节点上的临界电荷会降低。因此,在航空航天应用中,电路容易受到甚至低辐射能量引起软误差的颗粒的撞击[1]。辐射颗粒包括质子,中子,α颗粒,重离子,电子等[2]。粒子的碰撞会产生许多电子和孔,这些电子和孔可以在受影响的晶体管的排水口收集,从而导致瞬态电压干扰。在顺序/存储电路中,存储节点的值可以暂时翻转(如果可以恢复)或长时间翻转(如果它是无法恢复的,并且需要在下一个时钟周期中需要刷新),从而导致单个事件沮丧(SEU)[3]。请注意,单节点误(SNU)是一种类型的SEU。在组合/逻辑电路中,逻辑门的输出值可能会受到干扰,输出单个事件瞬态(set)脉冲[4]。SEU和集合是典型的软错误,在最坏情况下会导致电路失败甚至系统崩溃。因此,航空应用非常需要软误差。