9. Xu, Z.; Li, H.*; Liu, Y.; Wang, K.; Wang, H.; Ge, M.; Xie, J.; Li, J.; Wen, Z.; Pan, H.; Qu, S.; Liu,
摘要 颗石藻是现代海洋中最丰富的钙化生物,是许多海洋生态系统中重要的初级生产者。它们产生碳酸钙板(颗石藻)细胞覆盖层的能力在海洋生物地球化学和全球碳循环中发挥着重要作用。颗石藻还通过产生影响气候的气体二甲基硫醚在硫循环中发挥着重要作用。颗石藻研究的主要模式生物是 Emiliania huxleyi,现名为 Gephyrocapsa huxleyi。G. huxleyi 分布广泛,占据全球沿海和海洋环境,是现代海洋中最丰富的颗石藻。对 G. huxleyi 的研究已经确定了颗石藻生物学的许多方面,从细胞生物学到生态相互作用。从这个角度来看,我们总结了使用 G. huxleyi 取得的关键进展,并研究了这种模式生物的新兴研究工具。我们讨论了研究界需要采取的关键步骤,以推动 G. huxleyi 作为模式生物的发展,以及其他物种作为颗石藻生物学特定方面模型的适用性。
高分辨率透射电子显微镜 (HRTEM)、原子探针断层扫描 (APT) 和基于同步加速器的扫描透射 X 射线显微镜 (STXM) 等先进的微分析技术使人们能够在原子尺度上表征天然材料的结构和化学和同位素组成。双聚焦离子束扫描电子显微镜 (FIB-SEM) 是一种强大的工具,可用于特定位置的样品制备,然后通过 TEM、APT 和 STXM 进行分析,以获得最高的能量和空间分辨率。FIB-SEM 也可用作三维 (3D) 断层扫描的独立技术。在这篇评论中,我们将概述在地球和行星科学中使用 FIB-SEM 对天然材料进行高级表征时的原理和挑战。更具体地说,我们旨在通过以下示例突出 FIB-SEM 的最新应用:(a) 在月球土壤颗粒的空间风化研究中使用传统的 FIB 超薄小颗粒样品制备,(b) 通过基于 FIB 的 APT 对锆石中的 Pb 同位素进行迁移,(c) 基于协调同步加速器的 STXM 对碳质球粒陨石中的外星有机物质进行表征,以及最后 (d) 通过切片和视图方法对基于 FIB 的油页岩孔隙进行 3D 断层扫描。双光束 FIB-SEM 是一个强大的分析平台,其技术开发和适应范围在地球和行星科学领域是广阔而令人兴奋的。例如,在不久的将来,双光束 FIB-SEM 将成为表征返回地球的细颗粒小行星和月球样本的重要技术。
曾经用水水文,允许在低温下通过聚合产生玻璃。上面在图1中说明了化学反应。作为TEO的情况,基于硅的溶胶 - 凝胶工艺是最受过研究的过程。使用最广泛的金属烷氧化物是烷氧基硅烷,例如四甲氧基硅烷(TMOS),(3-甲状腺氧基氧甲基丙基) - 三甲氧基硅烷(GPTMS),甲基三甲氧基硅烷(MTES)和3--(三甲基氧基二酰基)丙氧基甲基丙二醇甲基甲基丙二醇甲基甲基甲基丙烯酸酯(甲基甲基甲基甲基苯甲酸酯)使基于硅的溶胶 - 凝胶过程主要在杂交材料形成中的主要特征是使用有机修饰的硅烷的有机基团简单地掺入。的确,在通常使用的水性介质中,Si-C键增强了针对水解的稳定性,对于许多金属 - 碳键来说,情况并非如此,因此可以轻松地在形成的网络中轻松合并各种有机基团。溶胶 - 凝胶反应也是可能的。单独或与其他烷氧化物(如TEOS)组合,通常在溶胶 - 凝胶过程中使用其他烷氧化物,例如铝,钛酸盐,锆石等。金属和过渡金属烷氧对水解和凝结反应的反应性更高。在参考文献[8]中,报告并讨论了有关SOL-GEL技术的更多详细信息。
在法国核研究所的框架下,CEA 与 AREVA 和 EDF 合作开发了铬涂层,旨在保护当前的锆合金核燃料包层材料免受高温蒸汽氧化(尤其是在意外条件下)的影响。本文重点介绍了锆合金-4 和基材上的铬涂层包层的最新研究结果。AREVA 发表了一篇补充论文 [1]。图中显示了铬涂层的典型制造微观结构。在 415°C(蒸汽,100 巴)下对未涂层参考材料和铬涂层锆合金-4 基样品进行了初步高压釜氧化试验,结果显示上一代 Cr 涂层的制备结果非常令人鼓舞。此外,还介绍了在蒸汽中高温 (HT) 氧化后获得的结果。结果表明,与传统的未涂层材料相比,迄今为止开发的铬涂层可以显著改善高温氧化后的包层机械性能(即延展性和强度)。因此,开发的铬涂层为冷却剂缺失事故(LOCA)提供了显著的额外裕度,并且在一定程度上为超越 LOCA 的条件提供了显著的额外裕度。
莫来石 ( 3Al 2 O 3 ·2SiO 2 ) 在自然界中并不大量存在,必须人工合成。它具有许多适合高温应用的特性。莫来石的热膨胀系数非常小(因此具有良好的抗热震性)并且在高温下具有抗蠕变性。最重要的是,它不易与熔融玻璃或熔融金属渣发生反应,并且在腐蚀性炉内气氛中稳定。因此,它被用作炼铁、炼钢和玻璃工业中的炉衬和其他耐火材料。生产莫来石有两种商业方法:烧结和熔合。烧结莫来石可从蓝晶石(一种在变质岩中发现的天然矿物)、铝土矿和高岭土的混合物中获得。该混合物在高达 1600 0 C 的温度下烧结。烧结质量包含 (85–90%) 莫来石,其余主要为玻璃和方石英。将适量的氧化铝和高岭土在约 1750 0 C 的电弧炉中熔合在一起,可以制成纯度更高的莫来石。熔合产品含有 (>95%) 莫来石,其余部分为氧化铝和玻璃的混合物。
受损的肝能代谢和脂质沉积可能是导致与高果糖消耗有关的负产量。过度刺激糖酵解和糖异生途径,脂肪酸氧化途径的降低似乎是这些障碍的基础。3然而,众所周知,持续糖消耗的许多病理学作用与胃肠道(GIT)水平发生的事件有关。4我们以前的体内研究说明了饮食中果糖对糖化含量的有害影响对糖化性胁迫,以及对蛋白质消化的受损及其对微生物群和遗传性共生分类的负面影响。5多余的果糖征收促进的糖氧化反应(或促乙二醇化状态)也可能有可能有助于促成与杂种相关的代谢障碍,但其他因素是†电子补充信息(ESI)。参见doi:https://doi.org/ 10.1039/d4fo00688g
摘要:熔融生长氧化铝基复合材料因其在航空航天应用方面的潜力而受到越来越多的关注;然而,快速制备高性能部件仍然是一个挑战。本文提出了一种使用定向激光沉积(DLD)3D 打印致密(< 99.4%)高性能熔融生长氧化铝-莫来石/玻璃复合材料的新方法。系统研究了复合材料的关键问题,包括相组成、微观结构形成/演变、致密化和力学性能。利用经典断裂力学、格里菲斯强度理论和固体/玻璃界面渗透理论分析了增韧和强化机制。结果表明,复合材料由刚玉、莫来石和玻璃或刚玉和玻璃组成。随着初始粉末中氧化铝含量的增加,由于成分过冷度的减弱和小的成核过冷度,刚玉晶粒逐渐从近等轴枝晶演变为柱状枝晶和胞状结构。氧化铝含量为 92.5 mol%时显微硬度和断裂韧性最高,分别为 18.39±0.38 GPa 和 3.07±0.13 MPa·m 1/2 ;氧化铝含量为 95 mol%时强度最高,为 310.1±36.5 MPa。强度的提高归因于微量二氧化硅掺杂提高了致密性,同时消除了残余应力。该方法揭示了利用 DLD 技术制备致密高性能熔融生长氧化铝基复合材料的潜力。关键词:激光;增材制造;氧化铝;莫来石;微观结构;力学性能
和锆酸盐(例如,Bace 0.6 Zr 0.3 Y 0.1 O 3-δ39,Bace 0.2 Zr 0.7 Y 0.1 O 3-δ40),Ytterbium和Ytterbium and yttrium co-
