•噪声恶魔使用任意K-Local(有限的Pauli重量)门具有通用计算能力(例如1- Quit(连续)门)。•噪声恶魔的速度有限(我们希望)。•您的计算能力较小 - 仅非全世界的克利福德门和测量值。
摘要 - 量子机械效率的脆弱性,实际量子计算机受到频繁噪声效应的困扰,这些噪声效应在计算过程中引起错误。量子错误校正代码通过提供识别和纠正相应错误的手段来解决此问题。但是,关于量子误差校正的大多数研究都是理论上的或仅针对特定硬件模型进行了评估。此外,相应的代码的开发以及它们是否确实解决了特定硬件模型的问题,迄今为止仍然依靠乏味的反复试验。在这项工作中,我们提出了一个开源框架,该框架通过为给定的应用程序自动介绍错误校正校正代码,然后进行自动噪声引用的量子电路模拟,从而支持工程师和研究人员。案例研究表明,这允许对错误校正代码进行更有效的实施和评估。
• 内核 Arm Cortex-M7 在典型条件下以 100 MHz 运行 – 16 KB I-Cache 和 16 KB D-Cache,具有错误代码校正 (ECC) – 单精度和双精度硬件浮点单元 (FPU) – 具有 16 个区域的内存保护单元 (MPU) – DSP 指令、Thumb ® -2 指令集 – 具有指令跟踪流的嵌入式跟踪模块 (ETM),包括跟踪端口接口单元 (TPIU) • 内存 – 128 KB 嵌入式闪存,内置 ECC(最多 2 个错误校正) – 384 KB 嵌入式 SRAM 用于紧耦合存储器 (TCM) 接口,以与 Cortex-M7 相同的频率运行,内置 ECC(最多 1 个错误校正) – 768 KB 嵌入式多端口 SRAM,内置 ECC(最多 1 个错误校正),连接到 AHB 系统,以与系统时钟相同的频率运行 – 硬化外部存储器控制器 (HEMC) 用于寻址具有可变数据大小(从 8 位到 48 位)的 PROM、SRAM 和 SDRAM • 六个独立芯片选择 • 最多可访问 2 GB 的外部存储器 • 内置 ECC,允许每 32 位纠正最多 2 位 • 系统外设 – 内置电源故障检测 (PFD)、可编程电源监视器和独立看门狗,确保安全运行
如何修复?1)多数投票错误校正:在三个位置进行冗余的存储位,定期检查所有三个位置 - 如果一个人翻转 - 基于多数投票重置三个物理位的组合= 1'逻辑'位
错误校正由于量子位的错误敏感性,因此错误校正是必要的。在某些情况下,可以使用经典算法检测错误的数量。但这有一个限度。更重要的方法是与其他量子比特重复计算。由于量子信息无法直接复制,因此只能通过传播信息来实现,研究人员已经为此开发了方法。利用超导量子比特,估计需要增加 1000 个物理量子比特才能使 1 个逻辑量子比特完美地工作。 5 当量子计算机拥有几千个逻辑量子位时,只有在某些类型的计算问题(例如解密加密(参见第 2 部分))上,量子计算机才比传统计算机具有量子优势。对于超导变体,需要数百万个物理量子比特才能使这些计算机完美地运行。我们还没到那儿。目前,IBM 似乎在 Osprey 量子计算机方面取得了最大进展,该计算机将于 2022 年底推出,由 433 个物理量子比特组成。