该研讨会旨在将各种各样的受众汇集在一起,这些受众由理论家,实验家和努力努力在量子设备中致力于故障可得到弹性,并为参与者提供一个平台,以交流思想,共享见解以及目前对量子误差纠正和缓解各个方面的先进研究。经过处理的主题包括其他减轻误差策略,经典和量子误差校正代码,新颖的量子算法和设备技术。
量子低密度平价检查代码的固有退化性对它们的解码构成了挑战,因为它大大降低了经典消息传播解码器的错误校正性能。为了提高其性能,通常采用后处理算法。为了缩小算法解决方案和硬件限制之间的差异,我们引入了一种新的后处理后处理,并具有硬件友好的方向,从而提供了与最新艺术技术相关的错误校正性能。所提出的后处理,称为校验,灵感来自稳定器的启发,同时大大减少了所需的硬件资源,并提供了足够的灵活性,以允许不同的消息时间表和硬件体系结构。,我们对一组帕累托架构进行了详细的分析,这些帕累托架构在延迟和功耗之间具有不同的权衡,这些分析源自FPGA董事会上实施的设计的重新分析。我们表明,可以在FPGA板上获得接近一个微秒的延迟值,并提供证据表明,对于ASIC的实现,可以获得较低的延迟值。在此过程中,我们还揭示了最近引入的T覆盖层和随机层调度的实际含义。
完全集成的量子计算架构 • >8-16 倍更高的复用率,消除了开销 • 内置错误校正 • 降低 1,000 倍的能量和热量耗散 • >10 倍更快的时钟速度 + 更低的延迟 • 降低 128 倍的控制脉冲复杂度 • 超导制造商业化就绪 • 系统组件便宜 400 倍
过去几年,谷歌人工智能部门一直在开发和研究一款名为 Sycamore 的量子计算机。为了进行量子计算,它使用多个硬件量子位创建单个逻辑量子位,这些量子位用于运行程序,同时执行错误校正。在这项新工作中,该团队开发了一种查找和纠正此类错误的新方法,并将其命名为 AlphaQubit
基于LLM的代码转换文本生成,用于语法误差校正。汤姆·波特和郑元。emnlp 2024。提示开源和商业语言模型以进行语法错误校正英语学习者文本。克里斯托弗·戴维斯(Christopher Davis),安德鲁·凯恩斯(Andrew Caines),ØisteinE。安德森(Andersen E.ACL 2024调查结果。英语学习者对代码切换句子的语法错误校正。Kelvin Chan,Christopher Bryant,Li Nguyen,Andrew Caines和Zheng Yuan。 lrec-coling2024。 语法误差校正。 Christopher Bryant,Zheng Yuan,Muhammad Reza Qorib,Hannan Cao,Hwee Tou ng和Ted Briscoe。 计算语言学; https://doi.org/10.1162/coli_a_00478建立用于代码转换的教育技术:当前的实践,困难和未来方向。 li nguyen,Zheng Yuan和Graham Seed。 语言; https://doi.org/10.3390/languages7030220Kelvin Chan,Christopher Bryant,Li Nguyen,Andrew Caines和Zheng Yuan。lrec-coling2024。语法误差校正。Christopher Bryant,Zheng Yuan,Muhammad Reza Qorib,Hannan Cao,Hwee Tou ng和Ted Briscoe。计算语言学; https://doi.org/10.1162/coli_a_00478建立用于代码转换的教育技术:当前的实践,困难和未来方向。li nguyen,Zheng Yuan和Graham Seed。语言; https://doi.org/10.3390/languages7030220
• QEng301:Q 物理、Q 信息和 Q 计算速成课程(3 ECTS),与 ARTeQ、ENS Paris-Saclay(ARTeQ-QEng)合作 • QEng302:量子硬件(3 ECTS),与 ARTeQ、ENS Paris-Saclay(ARTeQ-QEng)合作 • QEng303:Q 信息理论(3 ECTS)巴黎电信(QEng) • QEng304:Q 密码学(3 ECTS)巴黎电信(QEng) • QEng305:高级量子计算(4.5 ECTS)巴黎电信(QEng) • QEng306:Q 错误校正和图解 Q 计算(3 ECTS),与 Univ. Paris-Saclay(M2 QDCS -QEng)合作
量子信息科学不仅有望新技术,而且对量子力学的新理解有望。在QKD的情况下,这两种诺言都得到了部分兑现。现在有少数销售QKD系统的公司正在进行中,以确定如何将QKD集成到光学通信网络中。QKD的安全证明为量子世界实例化无超光信号的原理的微妙方式提供了新的见解:一种可能指出对量子力学的理解水平的原则。因此,很高兴看到如此清晰而优雅的主题介绍在保护信息中:从经典错误校正到苏珊·洛普(Susan Loepp)和威廉·沃特斯(William Wooters)的量子加密(cambridge University Press,2006年)。第一章是对密码学的简单介绍,并包含了古典密码的简洁解释,包括对第二次世界大战中德军使用的谜语密码的有趣讨论。本章继续讨论块密码,DES和公共密钥密码系统。在每种情况下,演示文稿都清晰而整洁,脚注将读者引向更详细的演示。本章没有以前接触密码系统,但很快就将初学者带入基础知识。第2章是对量子力学的简介,它又不对该主题进行以前的表现。在本章中,第一个组件的基本要素得到很好的解释。讨论基于光子极化的物理示例。量子理论可以粗略地说成两个组成部分:第一个概率振幅计算,使一个能够计算一个概率分布以进行测量结果,一旦给出了概率振幅,其次给出了许多方法(schroedinger机械,量子机械性动力学),从而使量子幅度amplude amplus。有足够的细节可以使某人有兴趣的人,主要是密码学以掌握后来的章节。几乎没有物理背景。不幸的是,尽管这很经济,但它确实限制了可以实现的理解水平。例如,一个不专心的学生可能会认为光的极化向量和用来描述其量子状态的两个维矢量是同一件事。它们不是:前者是指在普通的三维物理空间中的电场矢量,而后者则是概率幅度列表,并居住在希尔伯特(Hilbert)空间中。,但作为概率演算的介绍,
键是量子快速傅立叶变换[18]。因此,为了准备,已经研究了量子计算机健壮的替代方案。这些替代方法基于编码,哈希,在多元多项式,晶格上等。作为候选人,mceliece pkcs [9]是基于错误校正代码,最突出的GOPPA代码。编码是通过将二进制消息流的每个块与大二进制矩阵相乘,其中包括扰乱数据,然后通过GOPPA代码编码拼凑而成的数据,插入错误以掩盖并掩盖拼命的数据,并最终倒入编码的拼凑而成的数据。此矩阵作为公钥。解码然后包括例如,例如,通过例如。Patterson算法[12]。此外,[15]详细描述了McEliece PKC,[5]其安全性。