我们在电路级噪声模型下模拟了表面代码中的逻辑Hadamard门,将其汇总到方格连接硬件上的物理电路中。我们的论文是第一个在量子错误校正代码上使用逻辑统一门这样做的。我们通过斑块变形考虑两个建议:一个应用横向hadamard门的提案(即整个域壁贯穿了时间),以互换逻辑X和Z字符串,另一个将域壁应用于空间以实现此互换的情况。我们详细解释了为什么他们通过跟踪稳定器和逻辑运算符在每个Quantum误差校正回合中如何转换稳定器和逻辑运算符来执行逻辑Hadamard门。我们优化了物理电路并评估它们的逻辑故障概率,我们发现与相同数量的量子误差校正回合的量子记忆实验相当。我们提出了综合征 - 萃取电路,在电路级别噪声下与现象学噪声保持相同的效率距离。我们还解释了如何将交换-Quantum-error-or校正回合(要求将贴片返回其初始位置),只能将其编译为仅四个两倍的栅极层。这可以应用于更一般的方案,作为副产品,它可以从第一原则中解释如何如何构建Google Paper [1]的“步进”电路。
1。数学(40个标记): - 数字系统,多项式,两个变量中的线性方程,二次方程,算术进展,坐标几何学,三角测定,三角形,概率,三角形,三角形,四边形,四边形,四边形,圈子,圆,统计,统计。2。科学(60分):: a)物理学(20分): - 光反射和倒置,电力,电流的磁效应。人类的眼睛和丰富多彩的世界,能源的来源。b)化学(20分): - 原子和分子,原子结构,反应和方程,酸,碱和盐,金属和非金属,碳及其化合物,元素的定期分类。c)生物学(20分): - 植物和人类的有性繁殖(生物如何繁殖),控制与协调,生命过程,遗传和进化,我们的环境。3。英语(20分): - 时,语音,词汇和错误校正,介词,标签问题,文章和确定词以及语音的部分。4。心理能力测试和推理(30分):-1。逻辑推理: - 陈述和结论,参数和假设,三段论,数字序列和模式; 2。数学推理: - 数字和操作,代数表达式和方程,几何和月经,数据分析和解释; 3。非语言推理: - 视觉难题和图案,镜像图像和反射,立方体和骰子,纸张折叠和切割; 4。言语推理: - 类比和关系,单词形成和模式,编码和解码,分类和分类; 5。批判性思维: - 确定偏见和假设,评估论点和证据,得出推论和得出结论,解决道德或道德困境。
本文重点介绍了位置准确性低的问题和在复杂环境中移动机器人的不良环境感知性能。它基于IMU和GP的机器人姿势信息和环境知觉信息进行了关键的技术研究,以检测机器人自己的姿势信息,以及激光雷达和3D摄像头,以感知环境信息。在“姿势信息融合层”中,粒子群处理算法用于优化BP神经网络。没有偏见的卡尔曼过滤,并实现了未经意识的卡尔曼滤波器,以实现INS-GPS松散耦合导航,从而减少了INS组件IMU的偏见和噪声。此外,当GPS信号丢失发生时,训练有素的神经网络可用于输出预测信息,以进行惯性导航系统的错误校正,提供更准确的速度,并将信息作为绝对位置约束。在环境感知融合层中,补偿的IMU预一整合性调查分别与次要水平分别与视觉探光仪和激光镜探测融合。这使机器人的实时精确定位和环境图的更精细结构。最后,使用实际收集的轨迹来验证算法,以进行multi传感器信息的两级融合。实验结果表明,该算法提高了机器人的定位准确性和环境感知性能。机器人运动轨迹和原始真实轨迹之间的最大误差为1.46 m单位,而最小误差为0.04 m单位,平均误差为0.60 m。
4。“通信会话的媒体服务器管理”,在6月份向Landon Cox提交2021。授予美国专利号3月的11,601,4782023。5。“使用远期错误校正中的流码恢复损失”,于2021年9月向Michael Rudow,Ganesh Ananthanarayanan和Martin Ellis提起。授予美国专利号11,489,620 2022年。6。“通过大语言模型生成自适应比特率数据流神经网络代码”2024。7。“用于检测数据文件中异常的技术”,与Ryan Beckett和Siva Kakarla一起于4月2024。8。“自动检测复杂配置中的异常”,在2023年5月向Ryan Beckett和Siva Kakarla提交。9。“计算资源的双层机器学习辅助管理”,Zibo Wang,Pinghe Li,Mike Liang于2023年5月。10。在2023年5月向Anuj Kalia,Xenofon Foukas和Bozidar Radunovic提出的“节能5G VRAN的功率控制”。11。“针对虚拟化无线电访问网络的CPU电源管理”,于2023年5月向Anuj Kalia,Xenofon Foukas和Bozidar Radunovic提交。12。“预测VRAN资源负载的无线参数限制”,于2022年5月向Anuj Kalia,Sanjeev Mehrotra和Victor Bahl提交。13。“确定参考信号传输时间”,在2022年5月向Neil Agarwal,Manikanta Kotaru和Victor Bahl提交。
☐ Large accelerated filer ☐ Accelerated filer ☒ Non-accelerated filer ☒ Emerging growth company If an emerging growth company that prepares its financial statements in accordance with U.S. GAAP, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards† provided pursuant to Section 13(a) of the Exchange Act.☐†术语“新或修订的财务会计标准”一词是指财务会计标准委员会发布的任何更新,以在2012年4月5日之后进行会计标准编纂。通过检查标记表示注册人是否已提交报告并证明其管理层根据《萨班斯 - 奥克斯利法案》第404(b)条对其内部控制财务报告的有效性的评估(U.S.C. 157262(b))由准备或发布其审计报告的注册公共会计师事务所。☐如果根据该法案第12(b)条注册证券,请通过选项标记表示文件中包含的注册人的财务报表是否反映了对先前发行的财务报表的错误的纠正。☐表示,这些错误校正中的任何一个是否都是重述,需要根据第240.10D-1(b)条的相关恢复期内任何注册人的执行人员收到的基于激励赔偿的薪酬分析。☐通过检查标记表示注册人用来准备本文件中包含的财务报表的依据:
在数字通信中。单元I脉冲数字调制:数字通信系统的元素,数字通信系统的优势,PCM生成和重建,量化噪声,量化类型和兼容的类型,差异PCM(DPCM),时间分配多重和消除。增量调制:Delta调制及其拉回,自适应增量调制,PCM和DM系统中的噪声,说明性问题。单元II数字调制技术:简介,询问调制器,连贯和非辅助询问探测器,FSK调制器,FSK的相干和非辅助检测,BPSK调制器和BPSK的连贯接收,DPSK和QPSK原理。数据传输:基本频带信号接收器,错误的概率,最佳过滤器,匹配的过滤器,使用匹配的滤镜的错误概率。使用CORELATOR的eptimum滤波器。第三单元信息理论:信息理论简介,信息量及其属性的概念,平均信息(熵)及其属性,信息速率,共同信息及其特性,说明性问题。来源编码:简介,优势,Hartley Shannon的定理(渠道容量定理),Bandwidth-S/N权衡取代,Shannon-Fano编码,Huffman编码,说明性问题。单元IV线性块代码:简介,线性块代码的矩阵描述,线性块代码的错误检测和错误校正功能,Hamming代码。循环代码:编码,综合征计算,解码,
摘要:创伤性脑损伤(TBI)是人头因事故或跌倒而受到影响的常见伤害之一,并且是最常提交的保险索赔之一。但是,当个人通过提供虚假的医疗状况尝试保险欺诈索赔时,通常总是被滥用。因此,需要即时大脑条件分类系统。本研究提出了一种新型的分类结构,可以对非重生TBI患者和健康受试者进行分类,该患者使用静止状态脑电图(EEG)作为输入,解决计算机断层扫描(CT)扫描和磁共振成像(MRI)的固定性问题。所提出的体系结构利用长期内存(LSTM)和错误校正校正输出编码支持向量机(ECOC-SVM)进行多类分类。通过每个时间步骤将预处理的EEG时间序列提供给网络,LSTM单元将记住上一步的重要信息。LSTM单元的激活用于训练ECOC-SVM。 EEG的时间优势得到扩增,并能够达到100%的分类精度。 将所提出的方法与文献中的现有作品进行了比较,这表明所提出的方法在分类准确性,敏感性,特殊性和精度方面都优越。LSTM单元的激活用于训练ECOC-SVM。EEG的时间优势得到扩增,并能够达到100%的分类精度。将所提出的方法与文献中的现有作品进行了比较,这表明所提出的方法在分类准确性,敏感性,特殊性和精度方面都优越。
量子误差校正通过将其编码为较大的量子系统1,2来保护脆弱的量子信息。这些额外的自由度可实现错误的检测和校正,但也增加了编码逻辑量子的控制复杂性。容忍故障的电路在控制逻辑量子位时包含错误的传播,对于在实践3-6中实现错误抑制至关重要。尽管容忍故障设计原则上有效,但以前尚未在具有本机噪声特征的错误校正物理系统中证明它。在这里,我们实验表明,使用13个捕获的离子量子箱进行了培根 - 逻辑量子量的制备,测量,旋转和稳定剂测量的耐断层电路。当我们将这些容忍故障的方案与非耐受耐受的协议进行比较时,我们会看到在存在噪声的情况下逻辑原则的错误率显着降低。易于故障设计的结果是在离线误差校正后的平均状态准备和测量误差为0.6%,克利福德门误差为0.3%。此外,我们准备了超过蒸馏阈值7的忠诚度的魔术状态,证明了通用耐断层控制所需的所有关键单量成分。这些结果表明,耐断层电路可以在当前量子系统中高度准确的逻辑原始素。有了改进的两倍大门和中间测量的使用,可以实现稳定的逻辑量子。
就像我们日常使用的计算机一样,普适性——原则上运行任何算法的能力——是量子计算的核心概念。在当前证明普适性的竞赛中,以及在更大的系统中首次成功报告普适性[1],这一点比以往任何时候都更加真实。人们经常争论[2],普适性本身就是普遍的,例如几乎所有系统都是普适的,如果不是,稍微改变一下参数就会变成普适的。即使在嘈杂的系统中也是如此,在这种系统中,普适性需要与错误校正相结合。然而,我们认为,这还有另一面:如果任何非普适系统接近普适系统,那么许多普适系统也危险地接近非普适系统。那么普适性可能是不稳定的或低效的。事实上,大自然似乎不愿探索高维动力学[3],而简单的非普适系统往往是很好的近似值。致力于设计量子光学中的弱非线性、超导系统中的弱非谐性或避免固态系统中的光谱拥挤的实验物理学家非常清楚这些限制。在这里,我们将这种直觉放在一个精确的框架中,我们称之为可控性的量子距离,并展示它与一个众所周知的难以计算但独立有趣的量的关系:量子速度极限 [4–6]。值得指出的是,有许多不同的速度极限,一些用于状态变换,一些用于幺正变换;一些用于不受控动力学,一些用于受控动力学,请参阅 [4] 中的综述。我们在这里关注的是系统的受控演化。
讲师电子邮件办公时间和会议链接链接moin qureshi moin@gatech.edu tu tu zoom in zoom ia:ruixi wang rwang655@gatech.edu tbd ta:poulami das poulami das poulami das poulami das poulami ta: dunbar tdunbar8@gatech.edu tbd概述:量子计算承诺为一类重要问题的指数加速。量子计算机已经证明了数十个Qubit的量子计算机,并且预计未来几年的量子计数预计将跨越一百。量子计算是一个跨学科领域到错误校正代码(表面代码或shor代码)到系统和体系结构(内存/微观结构)到编译器和工具(仿真和编程),算法和应用程序。本课程的目的是为CS和ECE的学生提供量子计算的基本背景,并为他们提供编写代码并在实际量子计算机上优化量子程序的技能。本课程将更多地关注量子计算的“计算”方面,并将涵盖量子计算的架构,编译器和应用程序的近期(NISQ计算模型)和长期(容错的量子计算)。Objectives: By the end of this course students will: + Become familiar with 1-qubit and 2-qubit gate operations and gain the ability to build simple quantum circuits + Become familiar with the concepts of superposition and entanglement and be able to analyze quantum state transformations + Understand quantum algorithms (Deutsch-Jozsa, Bernstein Vazirani, Grover, and Shor) and compare effectiveness versus classical算法 +了解噪声问题并分析简单误差校正代码的有效性 +熟悉NISQ计算模型,并执行智能量子映射和误差缓解文本:本课程的材料将从以下内容得出: