摘要 本研究旨在识别和解释适应人工智能建议的决策行为背后的机制。我们借鉴锚定效应和体验式学习文献,开发了一个新的理论框架。我们关注两个因素:(1)个人的初始估计与人工智能建议之间的差异,以及(2)第二个锚点(即前一年信用评分)的存在。我们在企业信用评级环境中进行了两项纵向实验,其中正确答案随机存在。我们发现个人表现出一些矛盾的行为。在差异较大且没有第二个锚点的情况下,个人更有可能做出调整努力,但他们的初始估计仍然是强有力的锚点。然而,在多锚点环境中,个人往往会减少对初始估计的依赖。我们还发现个人的准确性取决于他们的去偏差努力。
我们报告了一种通用方法,用于提高软烤 BCB 键合堆栈中键合后晶圆对准精度和 BCB 厚度均匀性。该方法基于新型 BCB 微柱,在键合过程中充当锚点。锚点结构成为键合界面的自然组成部分,因此对键合堆栈的光学、电气和机械性能的干扰最小。我们研究了固定锚点密度和各种锚点高度与粘合剂 BCB 厚度的关系,这些性能也不同。我们证明了对准精度可以提高大约一个数量级,并且该工具可以接近基本的键合前对准精度。我们还证明了该技术对 2 – 16 μ m 的大范围 BCB 厚度都有效。此外,我们观察到,对于 8 – 16 μ m 范围内的 BCB 厚度,厚度不均匀性降低了 2 – 3 倍。
英寸孔的孔孔。在2英寸的孔中钻孔并用批准的环氧灌浆填充,用于⅞英寸的螺栓和1-½锚螺栓,用于重新安装,应为“ Hilti Kwik Hus-Ez”螺钉锚,应11。
摘要背景:在过去几年中,印度包括中风在内的非传染病(NCD)的发病率正在增加。溶栓疗法已彻底改变了急性缺血性中风的管理。尽管中风疗法的最新进展,但公众仍然对中风症状和管理不知情。目的:评估公众对中风风险因素,症状,治疗和康复措施的认识。方法:该研究是一项基于社区的横断面研究,设计为在线调查。用于调查的工具是半结构化的在线问卷。结果:关于中风的危险因素,参与者的41(14.8%)意识到瓣膜心脏病,188(6.5%)缺乏运动,238(85.9%)的血脂异常,236(85.2%)高血压,222(85.2%),222(80.1%(80.1%)吸烟,以及154(55.6%)(55.6%)。关于中风的症状,参与者的209(75.5%)意识到余额的损失,240(86.6%)的言语异常,面部弱点的261(94.2%),弱点的234(84.5%)。结论:应努力向公众教育中风,溶栓治疗和康复措施的罕见症状,以便人们在中风管理中做出有益的医疗保健决策。关键字:中风;窗户期;溶栓 *通讯作者:Paul Titus Rajan电子邮件:paultitusjuly29@gmail.com
1. Pexco LLC,型号 FG 560(带 U 型槽底座)、FG 300 UR(带 2 英寸方形锚) 2. Carsonite,“Survivor”(带 18 英寸 U 型槽底座) 3. Carsonite,Roadmarker CRM 375(带 18 英寸 U 型槽底座) 4. FlexStake,型号 604 5. GreenLine 型号 CGD(带 18 英寸 U 型槽底座) 6. Impact Recovery 型号 D36,带 #105 可驱动底座 7. Valtir Safe-Hit,带 8 英寸路面锚(SH248 GP1) 8. Valtir Safe-Hit,带 15 英寸土壤锚(SH248 GP2)和 18 英寸土壤锚(SH248 GP3) 9. Valtir Safe-Hit RT 360 柱,带土壤安装锚(GPS) 10. Valtir Safe-Hit SQR-LOC、SH248SQR-12 11. Shur-Tite Products、Shur-Flex Drivable 12. Three D Traffic Works、Earthflex TD5500 13. PEXCO,LLC/ Davidson Traffic Control Products、FTGM 系列(FTGM48W- 白色、FTGM48Y- 黄色和 FTGM48O- 橙色)
据世界卫生组织统计,脑卒中是全球第二大死亡原因和第三大致残原因(1)。脑卒中作为最具破坏性的神经系统疾病之一,给社会带来了巨大的经济和医疗负担(2)。根据神经病理学特点,脑卒中可分为缺血性脑卒中和出血性脑卒中(3)。其中,缺血性脑卒中是指因各种原因导致脑供血中断,从而引起相应的神经功能障碍,约占所有脑卒中的 70% ~80%(4)。45% ~62% 的缺血性脑卒中患者(5)有颅内动脉粥样硬化斑块及大动脉狭窄,25% 的病例(5)有微血管血栓形成和小动脉闭塞,22% 的缺血性脑卒中患者(6,7)可引起心源性栓塞。虽然大多数特发性脊髓损伤患者接受静脉溶栓或机械取栓治疗后神经功能得到改善,但部分患者仍会出现不同程度的并发症,如谵妄、言语障碍等(8)。
ISSN 1330-3651 (印刷版), ISSN 1848-6339 (在线版) https://doi.org/10.17559/TV-20201129072212 原创科学论文 巷道非直壁段锚喷支护力学模型及参数优化 程云海,李峰辉*,李刚伟 摘要:巷道锚喷支护一般采用梁模型计算,但巷道弯曲侧锚喷支护力学状态与直侧有明显不同。为了合理确定巷道弯曲侧锚喷支护参数,对喷层受力进行分析。将锚喷支护结构简化为固结梁与圆柱耦合的力学模型。为探明圆形巷道(或圆弧段)锚喷支护的力学机理,合理确定锚喷支护参数,对喷混凝土层进行应力分析。将锚喷支护结构简化为固结梁与圆柱体耦合的力学模型,结合摩尔-库仑强度理论,建立了喷混凝土层厚度、喷混凝土强度、锚杆间距、锚杆长度对围岩自承能力影响的力学模型,确定了锚喷支护参数与围岩自承能力的影响规律。研究结果表明:喷混凝土强度与围岩自承能力呈线性关系,喷混凝土厚度与围岩自承能力呈二次函数关系,锚杆间距、锚杆长度与围岩自承能力呈三次函数关系。研究成果对巷道曲线边坡锚喷支护参数的确定具有一定的指导意义。关键词:锚喷支护;筒体;力学模型1引言锚喷支护技术广泛应用于矿山、隧道、地铁等地下工程[1-6]。锚喷支护能最大程度地保持围岩的完整性和稳定性,充分发挥围岩的支护作用,对控制围岩的变形、位移、裂隙发展等起着重要作用[7-10]。国内外已有不少学者对锚喷支护技术进行了研究。李等[11-12]。[11]确定了喷层破坏时中性层的位置,探究了不同支护方式下锚喷支护参数与围岩自承能力的关系,建立了巷道围岩自承能力与锚杆间距、喷层厚度、喷层强度之间的力学模型。温等[12]建立了由系统锚杆支撑的外拱、喷层支撑内拱和钢框架组成的组合拱力学模型。王等[4]在对巷道围岩和喷层应力分析的基础上,建立了喷层厚度、喷层强度、锚杆间距对围岩自承能力影响的力学模型。方等[5]研究了喷层厚度、喷层强度、锚杆间距对围岩自承能力的影响。 [13] 设计了高预应力强锚喷支护方案,并利用振弦喷浆应力仪对方案实施后喷浆层的应力状态进行监测。吕建军等 [14] 提出了厚软岩巷道全断面锚固的二维半模型,建立了围岩及锚固系统的理论模型,得到了应力释放、锚杆与围岩耦合的分布规律。荆建军等 [15] 研究了预应力锚杆的力学性能
表示已测试的焊缝。锚焊缝应按照焊接材料制造商推荐的方式进行焊接。焊接锚焊缝时,允许使用屈服强度等于或低于母材屈服强度不超过 25 % 的其他焊接材料。为防止氢裂纹,如有必要,焊接过程中应使用预热、焊道间加热和后加热。为确保最低氢含量,所有用于制作锚焊缝的焊接材料都应根据制造商的建议进行干燥。锚固焊缝完成后,应冷却至环境温度,并根据 ISO 17637 进行目视检查,以确认表面有无裂纹(检查等级未作规定)。”。5 第 6.3.2.2.3 款由下列文字替代: