Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。PLOS ONE,12(6),E0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz,E.A.,Sassoubre,L.M。&Boehm,A.B。(2017)。海洋鱼环境DNA的持久性和阳光的影响。PLOS ONE,12(9),E0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。 &Turner,C.R。 (2016)。 环境DNA的生态及其对保护遗传学的影响。 保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N. (2021)。 环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。 皇家学会的会议记录B,288(1949),20210112。https:// doi。 org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。 (2018)。 环境DNA照亮了鲨鱼的黑暗多样性。 科学进步,4(5),EAAP9661。 https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T. 等。 (2021)。 使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。&Turner,C.R。(2016)。环境DNA的生态及其对保护遗传学的影响。保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N.(2021)。环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。皇家学会的会议记录B,288(1949),20210112。https:// doi。org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。(2018)。环境DNA照亮了鲨鱼的黑暗多样性。科学进步,4(5),EAAP9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T.等。(2021)。使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin,S.A.(2009)。MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard,I.&Bernatchez,L。(2022)。生物和非生物因素对鱼环境DNA的产生和降解的影响:一种实验评估。环境DNA,4(2),453 - 468。https://doi.org/10.1002/edn3.266 Collins,R.A.,Wangensteen,O.S.,O.S.,O'Gorman,E.J. &Genner,M.J。(2018)。海洋中环境DNA的持久性
CRISPR-CAS是细菌和古细菌中使用CRISPR RNA引导的监视复合物的自适应免疫系统,以靶向互补的RNA或DNA,以破坏1-5。定期间隔的目标RNA裂解是III型效应子复合物6-8的特征。在这里,我们确定了synechocystis型III-DV复合物的结构,这是从多蛋白到单蛋白III型效应物9、10,在裂解前和裂解后状态下的明显进化中间体。结构显示了效应子中的多生成融合蛋白如何以不寻常的排列束缚在一起,以组装成活性和可编程的RNA核酸内切酶,以及效应子如何利用与其他III类型效应子的靶RNA播种的独特机制。使用结构,生化和量子/经典分子动力学模拟,我们研究了三个催化位点的结构和动力学,其中靶RNA上的核糖的2'-OH在上层磷酸盐的线体自我裂解中起着核噬菌的作用。引人注目的是,大多数III型复合物的催化转移的排列类似于核酶的活跃位点,包括锤头,手枪和Varkud卫星核酶。我们的工作提供了对III型效应型复合物进化中重要的中间体对RNA靶向和裂解机制的详细洞察力。
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。PLOS ONE,12(6),E0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz,E.A.,Sassoubre,L.M。&Boehm,A.B。(2017)。海洋鱼环境DNA的持久性和阳光的影响。PLOS ONE,12(9),E0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。 &Turner,C.R。 (2016)。 环境DNA的生态及其对保护遗传学的影响。 保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N. (2021)。 环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。 皇家学会的会议记录B,288(1949),20210112。https:// doi。 org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。 (2018)。 环境DNA照亮了鲨鱼的黑暗多样性。 科学进步,4(5),EAAP9661。 https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T. 等。 (2021)。 使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。&Turner,C.R。(2016)。环境DNA的生态及其对保护遗传学的影响。保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N.(2021)。环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。皇家学会的会议记录B,288(1949),20210112。https:// doi。org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。(2018)。环境DNA照亮了鲨鱼的黑暗多样性。科学进步,4(5),EAAP9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T.等。(2021)。使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin,S.A.(2009)。MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard,I.&Bernatchez,L。(2022)。生物和非生物因素对鱼环境DNA的产生和降解的影响:一种实验评估。环境DNA,4(2),453 - 468。https://doi.org/10.1002/edn3.266 Collins,R.A.,Wangensteen,O.S.,O.S.,O'Gorman,E.J. &Genner,M.J。(2018)。海洋中环境DNA的持久性
Agersnap, S.、Larsen, WB、Knudsen, SW、Strand, D.、Thomsen, PF、Hesselsøe, M. 等人 (2017)。使用淡水样本中的环境 DNA 监测贵重、信号和窄爪龙虾。PLoS ONE,12(6),e0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz, EA、Sassoubre, LM 和 Boehm, AB (2017)。海洋鱼类环境 DNA 的持久性和阳光的影响。PLoS ONE,12(9),e0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes, MA 和 Turner, CR (2016)。环境 DNA 的生态学及其对保护遗传学的影响。保护遗传学,17(1),1 – 17。https://doi.org/10.1007/s10592-015-0775-4 Boulanger, E.、Loiseau, N.、Valentini, A.、Arnal, V.、Boissery, P.、Dejean, T. 等人 (2021)。环境 DNA 宏条形码揭示并解开了地中海海洋保护区的生物多样性保护悖论。英国皇家学会学报 B,288(1949),20210112。https://doi. org/10.1098/rspb.2021.0112 Boussarie, G.、Bakker, J.、Wangensteen, OS、Mariani, S.、Bonnin, L.、Juhel, JB 等人。 (2018)。环境 DNA 揭示了鲨鱼的黑暗多样性。科学进展,4(5),eaap9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd, AM、Cooper, MK、Le Port, A.、Schils, T.、Mills, MS、Deinhart, ME 等人 (2021)。利用环境 DNA 五十年来首次在密克罗尼西亚关岛发现极度濒危的路氏锤头鲨(Sphyrna lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin, SA、Benes, V.、Garson, JA、Hellemans, J.、Huggett, J.、Kubista, M. 等人 (2009)。 MIQE 指南:定量实时 PCR 实验发表的最低限度信息。临床化学,55(4),611 – 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard, I.、Laporte, M.、Côté, G.、April, J. 和 Bernatchez, L. (2022)。生物和非生物因素对鱼类环境 DNA 产生和降解的影响:实验评估。环境 DNA,4(2),453 – 468。https://doi.org/10.1002/edn3.266 Collins, RA、Wangensteen, OS、O'Gorman, EJ、Mariani, S.、Sims, DW 和 Genner, MJ (2018)。海洋中环境 DNA 的持久性